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I SUMMARY*

Mechanical program verification systems usually consist of two main

programs -- a verification condition generator and a theorem-prover.

The use of such a system involves two steps. (a) The verification

condition generator accepts as its input a source program to be

verified, an input/output specification for the program, and some

inductive invariants; the verification condition generator produces some

formulas, called "verification conditions," which imply that the source

program behaves as specified. (b) The verification conditions are then

submitted to the theorem-prover. If the theorem-prover determines that

the verification conditions are theorems, then the source program

behaves as specified.

This document describes a verification condition generator for a

subset both of FORTRAN 66 [12] and FORTRAN 77 [1]. While we place

constraints on the language that are not found in the ANSI

specifications, ours is a true subset in the sense that a processor that

correctly implements either FORTRAN correctly implements our language.

Our subset includes certain uses of COMMON, function subprograms,

subroutine subprograms with side effects, and computed and assigned GO

TOs. The most notable exceptions from our subset are the input/output

statements (e.g., READ, WRITE, and FORMAT), EQUIVALENCE, DATA, and

procedural parameters.

The logical language used to specify the FORTRAN programs is that

described in [5] and in [6]. The verification conditions produced are

suitable for input to the theorem-prover described in [5].

Unusual features of our system -- aside from our choice of FORTRAN

and our use of a quantifier free specification language -- include a

* The work reported here was supported in part by ONR Contract N00014-

75-C-0816.
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syntax checker that enforces all our syntactic restrictions on the

language, the thorough analysis of aliasing, the generation of

verification conditions to prove termination, and the generation of

verification conditions to ensure against such run-time errors as array-

bound violations and arithmetic overflow.

Although our syntax checker and verification condition generator

handle programs involving finite precision REAL arithmetic, we have not

yet formalized the semantics of those operations and hence cannot

mechanically verify programs that operate on REALs.

The two step approach to program verification was formalized by

Floyd in [8]. King [10] implemented the first mechanical verification

condition generator. Since then, many verification condition generators

have been implemented for many different programming languages, although

we are not aware of any other verification condition generator for

FORTRAN. For an introduction to program verification, see Anderson [2]

or Manna [ll; both books contain bibliographies.
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II APOLOGIA

The two steps of program verification stem from the fact that

conventional (i.e., von Neumann) programming languages are not

mathematical languages. The semantics of von Neumann languages are

sufficiently messy that it is not possible to derive one truth from

another in these languages by the application of simple rules such as

"modus ponens" and "substitution of equals for equals." While various

methods have been proposed for conducting "proofs" in these von Neumann

languages, the methods are all variations of the two-step theme:

transform the specified and annotated program into mathematical formulas

and prove those formulas.

There exist programming languages that are also mathematical

languages. In fact, the last few years have seen so much "flexibility"

introduced into the notion of "programming language" that prominent

researchers have agreed to call first order predicate calculus and set

theory "programming languages" and then proceeded to argue the merits of

various "compilers" and "interpreters" (i.e., theorem-provers). No one

has yet found a way to execute programs written in such languages as

efficiently as programs written in conventional programming languages --

at least for most of the usual programming tasks.

However, because of the great effort devoted to programming

language design and semantics during the past decade, many students of

program semantics will smirk, scowl, or choke at the mere mention of the

word "FORTRAN." For example, a noted program semanticist remarked to

the First International Conference on Reliable Software that if the West

hoped to win the next war, it hal better stop using COBOL and FORTRAN.

We leave to the reader the tough choice between (a) the simple

semantics of almost-as-efficient modern languages providing such
features as variant records and pointers, and (b) the blinding speed of
a resolution theorem-prover executing the powerful "there exists x such

that p(x)" feature.

3



Nevertheless, the use of FORTRAN is widespread, even within first-rate

computer science departments. We suspect that the wide use of FORTRAN

will continue until someone designs and implements a mathematical

programming language that executes as efficiently as FORTRAN. As long

as the use of FORTRAN continues, we suspect that it may be profitable to

specify and verify FORTRAN programs.

We conclude this apologia with a quotation from Backus's "The

History of FORTRAN, I, II, and III" (3].

To this day I believe that our emphasis on object program
efficiency rather than on language design was basically
correct. I believe that had we failed to produce efficient
programs, the widespread use of languages like FORTRAN would
have been seriously delayed. In fact, I believe that we are
in a similar, but unrecognized, situation today: in spite of
all the fuss that has been made over myriad language details,
current conventional languages are still very weak programming
aids, and far more powerful languages would be in use today if
anyone had found a way to make them run with adequate
efficiency. In other words, the next revolution in
programming will take place only when both of the following
requirements have been met: (a) a new kind of programming
language, far more powerful than those of today, has been
developed and (b) a technique has been found for executing its
programs at not much greater cost than that of today's
programs.
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III THE ANSI SPECIFICATIONS OF FORTRAN

Neither specification of FORTRAN ((12], (1]) provides all that is

needed to specify a verification condition generator.

(1) The rules that define the syntax of FORTRAN are clearly

stated, but they are intermixed with those that define
the execution of a FORTRAN program. Because the
specification of the syntax and semantics are

intertwined, the reader of this document might have some

difficulty interpreting a remark by us such as "suppose

we are given a syntactically correct program."
Therefore, we specify in detail the syntax of our subset

of FORTRAN.

(2) The results of arithmetic operations on types REAL,

DOUBLE PRECISION, and COMPLEX are not specified in [12]
or [1] (or, for that matter, in more fashionable

language definitions). The absence of such

specifications makes it difficult to verify much about
programs that use such operations. It may be possible to

specify such operations in a way that is applicable to a
variety of existing machines and useful for mechanical

theorem-proving; see, for example, Brown [7]. We have

not yet incorporated any such specifications into our
system. We repeat an early warning of Goldstine and von

Neumann [9] on just this issue:

The floating binary point represents an
effort to render a thorough mathematical

understanding of at least part of the
problem unnecessary, and we feel that this

is a step in a doubtful direction.

(3) The definitions of FORTRAN do not provide a method for

specifying in a formal language the effects or results of
FORTRAN subprograms. (For example, there is no specified

nomenclature for referring to entities of a COMMON block

not declared in that program unit even though the program
unit might be specified to redefine those entities via

CALLs to other subprograms.) We have invented some
nomenclature for specifying Input/output assertions,
invariants, and so forth.

(4) Some concepts used in [12] and (i1 (e.g., "entity," "by

I



value," and "by name") are not defined and some
statements are bafflingly vague (e.g., "It is not
necessary for a processor to evaluate all of the operands

of an expression if the value of the expression can be
determined otherwise." Section 6.6.1 [1]). We believe

it is possible to produce paraphrases of [12] and [I]
that are formal and that reflect the intentions of the
authors, but no such documents exist as far as we know.
We have relied upon common sense and our understanding of
informal English to imagine a formal definition of
FORTRAN with respect to which our verification condition
generator might be formally proved correct.
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IV AN INFORMAL DESCRIPTION OF OUR FORTRAN SUBSET

In this section we describe informally the subset of FORTRAN with

which our system deals.

In selecting our subset, we omitted many features. That we have

omitted a feature of FORTRAN does not indicate that we think that

feature is logically intractable. We have no doubt that a verification

condition generator could be implemented to include some of the FORTRAN

features we have omitted.

For the rest of this section and the next, we assume that the

reader has a rough idea of FORTRAN syntax.

The input to our verification condition generator must include not

only the subprogram (function or subroutine) to be verified, but also

all subprograms referenced somehow by the candidate subprogram. Each

referenced subprogram must have been previously specified and verified.

For example, some of our restrictions depend upon the types and

dimensions of the "dummy arguments" (i.e., formal parameters) of the

referenced subprograms and upon how those subprograms modify their

arguments.

I
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A. Statements in Our Subset

The FORTRAN statements in our subset are:

Arithmetic assignment DO
Logical assignment DIMENSION
GO TO assignment COMMON
Unconditional GO TO INTEGER
Assigned GO TO REAL
Computed GO TO DOUBLE PRECISION
Arithmetic IF COMPLEX
CALL LOGICAL
RETURN EXTERNAL
CONTINUE Statement function
STOP FUNCTION
PAUSE SUBROUTINE
Logical IF END

Our subset does not inciude the following FORTRAN 77 statements:

BACKSPACE FORMAT
BLOCK DATA IMPLICIT
Block IF INQUIRE
CHARACTER INTRINSIC
Character assignment OPEN
CLOSE PARAMETER
DATA PRINT
ELSE PROGRAM
ELSEIF READ
ENDFILE REWIND
ENDIF SAVE
ENTRY WRITE

EQUIVALENCE

B. Restrictions

For those statements in our subset we enforce all of the

restrictions of both FORTRAN 66 and 77; furthermore, we enforce some

adAitional restrictions.

To state our restrictions precisely we introduce some nomenclature.

We do so formally later. One such notion is that a variable or array is

"possibly smashed" by a subprogram. Roughly speaking, this means that

the subprogram contains an assignment statement which alters the

variable or array, or the subprogram calls another subprogram that

possibly smashes the variable or array.

8
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We now informally enumerate the major restrictions we impose,

beyond those imposed by the ANSI specifications. While some of the

restrictions may appear radical, many of the most severe are in fact

closely related to ANSI restrictions. In the next section we comment on

the relations between our restrictions and those of ANSI.

Every expression using infix operators must be fully
parenthesized. For example, either (A + (B + C)) or ((A + B)
+ C) is permitted, but A + B + C is not.

We countenance no implicit coercion. In an arithmetic
assignment statement or a statement function statement, v = e,
the type of e must be the type of v. In (el + e2 ) the types
of e i and e2 must be the same.

No Hollerith constants are permitted.

No COMMON statement may declare a variable or ar-ay to be
in blank COMMON, and the components of each labeled COMMON
block x must be specified in exactly the same order and with
exactly the same names, types, and dimensions in each
subprogram in which x is a labeled COMMON block.

The names of intrinsic functions cannot be used except to
denote those functions. For example, ABS may not be used as
the name of a user-defined function subprogram.

No variable used in a GO TO assignment or an assigned GO
TO statement of a subprogram may be used in any statement of
the subprogram except a type, assigned GO TO, or GO TO
assignment statement.

Subroutines and functions may not be passed as arguments
to subprograms.

In a CALL statement or function reference, if the formal
argument is an array, then the corresponding actual must be an
array of the same size and number of dimensions.

Function subprograms may not possibly smash any of their
arguments or anything in COMMON. That is, function
subprograms may not have side effects.

No subroutine call may "possibly" violate the strict
aliasing restrictions of FORTRAN. For example, if a
subroutine has two arguments and possibly smashes the first,
then that subroutine may not be called with the same array
passed in both arguments nor may an array in COMMON be passed
as the first argument if the subroutine "knows" about the
COMMON block, even via subprograms. Furthermore, an array
element may not be passed to a subroutine in an argument
position that is possibly smashed.

9



An adjustable array dimension may not be possibly
smashed, and the control variable and parameters of a DO may
not be possibly smashed within the range of the DO.

DOs may not have extended ranges.

C. Tokens

Suppose we have written and verified a subprogram in which a local

array is declared tu be of size 256. Suppose that we later wish to use

the subprogram in another application and wish the local array to be of

size 128. Then, if we wish to have confidence in the correctness of the

modified program, we must verify it "again." For example, the new

program may not have enough space to perform as specified, array bounds

may be violated (either positively or negatively), and a new analysis of

overflow and underflow is necessary.

Since twiddling the built-in constants in a program is a fairly

common activity, especially when moving the program from one site to

another, it is convenient if it can be done without incurring the cost

of verifying the modified program. To that end we permit the

simultaneous verification of a large class of programs by the addition

to our language of what we call "tokens." From the programmer's point

of view, tokens are similar to INTEGER variables, except that they may

be used wherever FORTRAN permits INTEGER constants. Furthermore, before

the subprogram is compiled, the user must specify positive INTEGER

constants to be substituted for the tokens. Such a substitution into a

syntactically correct program (as we define it) produces a syntactically

correct FORTRAN program.

To prove the correctness of subprograms containing tokens, it is

often necessary to include hypotheses about the values of the tokens in

one's input assertions. For example, in one program we have verified we

required that one token be a power of two and another be its base two

logarithm. Not only do tokens make it easier to obtain two slightly

different versions of a correct program, they usually make it easier to

verify a single program because they make obvious the key relationships

10



between the constants without bringing in unnecessary detail (such as

8192 and 13). In addition, the explicit statement of the crucial

relationships between the constants makes it easier to modify the

program in the future. Of course, failure to instantiate the tokens

with values satisfying the input assertions will produce programs that

execute correctly whenever unsatisfiable input assertions are satisfied.

11
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V COMMENTS ON THE RESTRICTIONS

In this section we offer partial explanations for the major

restrictions enumerated in the previous section.

A. Full Parenthesization

FORTRAN permits one to write A+B+C. The order in which the

subexpressions of unparenthesized expressions are combined is left up to

the processor. However, (A+B)+C may cause an overflow when A+(B+C) does

not (e.g., let A and B be very large INTEGERs and let C be the negation

of B). By insisting upon full parenthesization, we reduce the number of

orders of combination. However, even if an expression is fully

parenthesized, a processor may use the facts that addition and

multiplication are commutative.

B. Coercion

FORTRAN permits one to write R+D, where R is of type REAL and D is

of type DOUBLE PRECISION. The result is of type DOUBLE PRECISION.

Similarly, one may write the assignment D = R, which converts the value

of R into a DOUBLE PRECISION number and smashes the result into D. For

simplicity, we prohibit such implicit coercion. Since our subset

includes the intrinsic functions for explicit coercion (e.g., DBLE

converts a REAL value into a DOUBLE PRECISION one) no expressive power

is lost (e.g., we permit DBLE(R)+D and D = DBLE(R)).

C. Hollerith Data

FORTRAN 66 makes some provisions for manipulating "Hollerith data."

However, FORTRAN 77 does not.

13



D. COMMON

FORTRAN permits two subprograms to declare different organizations

for the same COMMON block. Thus, one subprogram may declare that the

first "storage unit" contains a REAL while the other subprogram declares

that the first storage unit contains an INTEGER. The two declarations

need not have the same number of names, sizes, or types. For labeled

COMMON they must, however, describe the same number of storage units.

For blank COMMON, one may be arbitrarily longer than the other.

Such organization of storage complicates the determination of

whether a variable is defined and what its value is. For example, if

the INTEGER variable I and the REAL variable R share the same storage

location, then I becomes undefined when R is defined (e.g., assigned

to), and vice versa. We made our restrictions on the use of COMMON to

eliminate such complications.

E. Intrinsic Functions

FORTRAN permits the user .to define a function with the same name as

an intrinsic function. But FORTRAN 66 and 77 have different rules for

obtaining the right to call such user-defined functions.

F. Label Variables

We enforce a strict syntactic segregation between INTEGER variables

used to hold statement labels and INTEGER variables used in normal

arithmetic expressions.

FORTRAN achieves much the same effect but makes a semantic

requirement. In particular, if an INTEGER variable is assigned a label,

subsequent reference to the variable as an INTEGER is prohibited unless

there is an intervening arithmetic assignment. Similarly, an assigned

GO TO is prohibited if the label variable has an arithmetic rather than

label value. Our restriction does not decrease the expressive power of

the language, but may require the introduction of a second variable name

to be used in those contexts requiring a "statement label type"

variable.

14



G. Functional Parameters

Our verification condition generator assumes that each time a CALL

statement or function reference is encountered it can determine exactly

which subroutine or function subprogram is being invoked so that it can

obtain the specification of the referenced subprogram and produce the

necessary verification conditions. If we had permitted subroutines or

functions to be passed as arguments, then verification condition

generation would have been severely complicated.

H. Agreement of Dimension

FORTRAN permits the passing of an n-dimensional array to a

subprogram "expecting" an m-dimensional array. Since the ANSI

specifications spell out the order in which array elements are stored,

such abuse of array indexing is well defined and can be used to

implement unusual overlays and access patterns.

FORTRAN also permits passing an array element to a subprogram

expecting an array. We have omitted both features because of their

complexity.

I. Functions

Our requirement that function subprograms not have side effects

stems from the fact a FORTRAN processor may evaluate (or not evaluate)

the parts of an expression in an unpredictable order.

Let us illustrate the problems this causes. Suppose that N is an

INTEGER variable in COMMON, that function subprogram R has the side

effect of setting N to N+I and that function subprogram S has the side

effect of setting N to 2*N. Finally, suppose that just before executing

the assignment statement

X - (R(X)*S(X))

N has the value 5. Then after the execution of the assignment

statement, N may have the value It or may have the value 12.

15



Worse, if the value returned by S(X) is 0, then the value of N

after the evaluation of (R(X)*S(X)) would be 10 if the processor were

smart enough not to evaluate R(X) once it spotted that S(X) returned 0,

since an expression part need not be evaluated unless the processor

finds it necessary. In fact, a really smart processor might be able to

determine that S(X) always returns 0. Then after the evaluation of

(R(X)*S(X)), the value of N might still be 5!

Of course, the reason FORTRAN permits such flexibility in

evaluation is so that good optimizing compilers can be written. In

fact, the ANSI definitions of FORTRAN specify that the value of N is

"undefined" if either the call to R or S might not be evaluated. (See

section 10.2.9 of [12] and section 6.6.1 of [1]). It is interesting to

speculate on the number of times correct optimizing compilers have

introduced "bugs" into programs written by programmers unfamiliar with

the ANSI specifications.

Another reason for prohibiting side effects in function calls is

the complexity of the rules concerning what is perhaps the most bizarre

concept in [12] -- "second level definition." (SE 2 sections 10.2.7 and

10.2.8.) It is perhaps not widely known that if X is of type REAL, A is

an array, and R and N are as above, then the following sequence of two

instructions is illegal:

X=R(X)
B=A(N)

After the first statement, in which N is redefined, N is no longer

defined at the second level and may not be used as a subscript.

J. Aliasing

Presumably because of a desire to permit the implementation of

parameter passing by either a "call by reference" or "call by return

value" scheme, and because of its concern with optimizing compilers, the

FORTRAN 66 specification took a dim view of aliasing.

16
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For example, suppose subroutine SUBR takes two arguments, I and J,

and assigns to I. Then a CALL of the form

CALL SUBR(K, K)

is illegal. In a "call by reference" implementation, the assignment to

I would also smash J inside the subprogram. (Consider the difficulty of

writing an optimizing compiler for such an implementation of parameter

passing unless the specification rules out CALLs such as the one

exhibited. For example, it would be impossible to take advantage of the

information that the current value of J is in an accumulator.) In a

"call by return value" implementation the assignment to I would not

smash J, but the final effect of the CALL on K would depend upon the

order in which the final values of the formal parameters were assigned

to K.

Without mentioning the word "aliasing," FORTRAN 66 prohibits it in

some cases. "If a subroutine reference causes a dummy argument [i.e.,

formal parameter] in the referenced subroutine to become associated with

[i.e., be allocated the same storage location as] another dummy argument

in the same subroutine or with an entity in COMMON, a definition of

[i.e., assignment to] either entity within the subroutine is

prohibited." (Section 8.4.2 of [12], bracketed definitions of

unconventional terms added by us). FORTRAN 77 has a similar

prohibition.

We enforce this restriction by requiring that if a subprogram

"possibly smashes" an argument, then it is illegal to associate that

argument with any other argument or entity in COMMON. (A less syntactic

interpretation is possible. We consider illegal CALLs that "possibly

smash" aliased arguments even if the arguments are not "actually"

smashed.)

17



K. DO Loop Controls

FORTRAN 66 specifies that variables that represent adjustable array

dimensions in a subprogram may not be modified during execution of the

subprogram. In addition the control variable and parameters of a DO

statement may not be modified by the statements in the range of the DO.

Oddly, FORTRAN 77 permits both kinds of modifications but specifies that

such modifications do not affect the size of the array or the number of

times the DO loop is executed. This permits compilers to optimize the

control of DO loops by storing the initial values of those variables in

registers and using hardware increment and test instructions.

Again, we use our syntactically defined concept of "possibly

smashed" to interpret this. For example, if SUBR is a subroutine that

possibly smashes its first argument and I is the control variable of a

DO statement, then the range of the DO statement may not contain:

CALL SUBR(I, X)

because it appears to modify I illegally. It is possible that

particular invocation of SUBR does not in fact modify I so that such a

CALL is technically permitted in FORTRAN.

L. Extended DOs

Although FORTRAN 66 permits "extended DOs," FORTRAN 77 prohibits

them.

18



VI THE FORMAL SYNTAX

In this and the next five sections we make precise the preceding

vague statements about our FORTRAN subset and what we mean when we say a

subprogram is "correct" with respect to an input/output specification.

Then, in Section XIII, we present a sample program in our subset and

some of the verification conditions generated for it. The example has

been organized so as to illustrate some of the formal notions about to

be presented. However, some readers may wish to inspect the example

before entering the formal sections of this document.

Lasciate ogni speranza, voi ch' entrate.

We adopt from (l] the definitions of the following: symbolic name,

INTEGER constant, REAL constant, DOUBLE PRECISION constant, COMPLEX

constant, LOGICAL constant, and unsigned constant.

For example, MATRIX is a symbolic name. -127 is an INTEGER

constant and 1.25E-5 is a REAL constant.

Notation. sequences. We shall write

<> for the empty sequence,

<a> for the sequence of length 1 whose only member is a,

<a b> for the sequence of length 2 whose first member is a and

whose second member is b,

<a b c> for the sequence of length 3 whose first member
is a, whose second member is b, and whose third member is c,

and so on.

Definition. token. A token is a sequence of 2 to 7 characters

that satisfies the constraints on variable symbols in our logic (see

[5] and (6]) and that begins with the character @.

19



Definition. constant. x is a constant if and only if x is an

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL constant.

Definition. label. A label is a sequence of from 1 to 5 digits

the first of which is not 0.

Definition. types. x is a type if and only if x is one of the

character sequences INTEGER, DOUBLE, COMPLEX, REAL, or LOGICAL.

Definition. type of a constant. The type of an INTEGER, REAL,

DOUBLE PRECISION, COMPLEX, or LOGICAL constant is respectively INTEGER,

REAL, DOUBLE, COMPLEX, or LOGICAL.

Definition. variable pattern. x is a variable pattern if and only

if for some symbolic name n and some type t, x is <n t>. If <n t> is a

variable pattern, then n is its name and t is its type.

Note. We have invented the concept of variable pattern, which is

not employed in the usual specifications of FORTRAN syntax, to help in

our formulation of FORTRAN syntax (e.g., in the syntax of well-formed

FORTRAN expressions). The presence of the variable pattern <v t> in the

"syntactic environment" (to be defined) of a FORTRAN program indicates

that the symbolic name v is to be used as a variable of type t.

Definition. array pattern. x is an array pattern on s if and only

if s is a set of symbolic names and for some n, t, i, j, and k, each of

the following is true:

(I) x is one of the sequences <n t i>, <n t i j>, or <n t i j

k>.

(2) n is a symbolic name.

(3) t is a type.

(4) Each of i, j, and k is either a positive, unsigned

INTEGER constant, a token, or a member of s.

The name of an array pattern is its first member, its type is its

second member. The dimension list of an array pattern p is the terminal

subsequence of p starting with the third member of p.

Note. An array pattern is used to encode the type, number of

dimensions, and size of each dimension of a symbolic name used as an
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array name in a FORTRAN subprogram. Those elements of the dimension

list that are symbolic names are the so-called "adjustable" dimensions

of the array. For example, if JMAX is in the set s, then <MATRIX REAL

10 JMAX> is an array pattern on s and encodes the information that

MATRIX is a two-dimensional array of type REAL, measuring 10 by JMAX.

Definition. sort. s is a sort if and only if for some t, i, j,

and k, t is a type, each of i, j, and k is a positive INTEGER, a token,

or a symbolic name, and s is one of the sequences

<t>

<t i>
<t i j>
<t i k>.

The sort of a variable pattern <v t> is <t>, the sort of an array

pattern <v t i>, <v t i j>, or <v t i j k> is, respectively, <t i>, <t i

j>, or <t i j k>.

Definition. function pattern. p is a function pattern if and only

if for some fn, some t, and some nonempty sequence <v1 ... Vn> each of

the following statements is true:

(1) p is the sequence <fn t v ... Vn>.

(2) fn is a symbolic name.

(3) t is a type.

(4) Each member of <vl ... vn> is either a variable pattern

or an array pattern on the set of names of the vi with
type INTEGER.

(5) fn is not the name of any member of <vl ... Vn>.

(6) For each choice of vi and v. from <v1 ... vn>, the name
of v i is different from tha of vj, provided i and j are
different.

The name of a function pattern is its first member. The type of a

function pattern is its second member. If p is a function pattern of

length n+2, then (a) p has n arguments, (b) if i is an integer greater

than 0 and less than or equal to n, then the ith argument of p is the

i+2nd member of p, and (c) the argument list of p is the sequence of

length n whose ith member is the ith argument of p.
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Note. A function pattern is used to encode the number, names, and

sorts of dummy arguments to a function subprogram and the type of the

result.

Definition. statement function pattern. p is a statement function

pattern if and only if p is a function pattern and each member of the

argument list of p is a variable pattern.

Note. A statement function pattern is used to encode the number

and types of the arguments of a statement function and the type of the

result. The names of the variable patterns in a statement function

pattern are actually irrelevant. See the definition of the "statement

function statement."

Definition. intrinsic function pattern. The intrinsic function

patterns are:

<ABS REAL <I REAL>>
<TABS INTEGER <I INTEGER>>

<DABS DOUBLE <I DOUBLE>>

<AINT REAL <I REAL>>

<INT INTEGER <I REAL>>

<IDINT INTEGER <I DOUBLE>>

<AMOD REAL <I REAL> <J REAL>>
<MOD INTEGER <I INTEGER> <J INTEGER>>

<AMAXO REAL <1 INTEGER> <J INTEGER>>

<AMAXI REAL <I REAL> <J REAL>>

<MAXO INTEGER <1 INTEGER> <J INTEGER>>
<MAXt INTEGER <I REAL> <J REAL>>
<DMAXI DOUBLE <1 DOUBLE> <J DOUBLE>>

<AMINO REAL <T INTEGER> <J INTEGER>>

<AMINI REAL <I REAL> <J REAL>>
<MINO INTEGER <I INTEGER> <J INTEGER>>
<MINI INTEGER <I REAL> <j REAL>>

<DMINI DOUBLE <I DOUBLE> <J DOUBLE>>

<FLOAT REAL <I INTEGER>>

<IFIX INTEGER <I REAL>>

<SIGN REAL <I REAL> <J REAL>>
<ISIGN INTEGER <I INTEGER> <J INTEGER>>

<DSIGN DOUBLE <T DOUBLE> <J DOUBLE>>

<DIM REAL <T REAL> <J REAL>>
<IDIM INTEGER <T INTEGER> <J INTEGER>>

<SNGL REAL <I DOUBLE>>
<REAL REAL <I COMPLEX>>

<AIMAG REAL <I COMPLEX>>

<DBLE DOUBLE <T REAL>>
<CMPLX COMPLEX <I REAL> <J REAL>>
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<CONJG COMPLEX <I COMPLEX>>
<EXP REAL <I REAL>>
<DEXP DOUBLE <I DOUBLE>>
<CEXP COMILEX <I COMPLEX>>
<ALOG REAL <I REAL>>

<DLOG DOUBLE <I DOUBLE>>
<CLOG COMPLEX <I COMPLEX>>
<ALOGIO REAL <I REAL>>
<DLOGIO DOUBLE <I DOUBLE>>
<SIN REAL <I REAL>>
<DSIN DOUBLE <I DOUBLE>>
<CSIN COMPLEX <I COMPLEX>>
<COS REAL <I REAL>>
<DCOS DOUBLE <I DOUBLE>>
<CCOS COMPLEX <I COMPLEX>>
<TANH REAL <I REAL>>
<SQRT REAL <I REAL>>
<DSQRT DOUBLE <I DOUBLE>>
<CSQRT COMPLEX <I COMPLEX>>
<ATAN REAL <I REAL>>
<DATAN DOUBLE <I DOUBLE>>
<ATAN2 REAL <I REAL> <J REAL>>
<DATAN2 DOUBLE <I DOUBLE> <J DOUBLE>>
<DMOD DOUBLE <I DOUBLE> <J DOUBLE>>
<CABS REAL <I COMPLEX>>

Note. In the spirit of FORTRAN 77, our intrinsic function patterns

include patterns for the basic external functions of FORTRAN 66.

Our FORTRAN subset includes operations on types REAL, DOUBLE, and

COMPLEX, and our verification condition generator (to be described) will

generate correct verification conditions for those operations provided

their input/output relations are specified. However, we have not yet

specified any of the operations involving finite precision REAL

arithmetic and consequently have no mechanical means of proving anything

about FORTRAN programs that use such operations.

Our patterns for the maximum and minimum functions have only two

arguments. Consequently, syntactically correct programs in our subset

may not apply the maximum and minimum functions to an arbitrary number

of arguments as permitted in FORTRAN. The maximum and minimum functions

are the only FORTRAN 66 functions with an indefinite number of

arguments.
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Definition. subroutine pattern. p is a subroutine pattern if and

only if for some fn and some (possibly empty) sequence v1 , *.., vn each

of the following statements is true:

(1) p is the sequence <fn v, ... Vn>.

(2) fn is a symbolic name.

(3) Each member of <v 1 ... vn> is either a variable pattern

or an array pattern on the set of names of the vi with
type INTEGER.

(4) fn is not the name of any member of <v 1 ... Vn>.

(5) For each possible choice of v i and v. from <v I ... Vn> ,
the name of vi is different from tha of vj provided i is
different from j.

The name of a subroutine pattern is its first member. If p is a

subroutine pattern of length n+l, then (a) p has n arguments, (b) if i

is an integer greater than 0 and less than n+l, then the ith argument of

p is the i+lst member of p, and (c) the argument list of p is the

sequence of length n whose ith member is the ith argument of p.

Note. We next define the notion of a "syntactic environment."

Intuitively, such an environment is implicitly associated with a given

FORTRAN subprogram (e.g., subroutine) and specifies the names of all

entities known to the subprogram: arrays, variables (artificially

divided into two sets according to whether they will be used to store

labels for assigned GO TO statements), functions (divided into statement

functions and others), subroutines, and COMMON block names. A syntactic

environment also specifies other syntactic information about these

entities, such as their type, number of dimensions or arguments, and so

on.

Definition. syntactic environment. s is a syntactic environment

if and only if s is a sequence of seven sets (called the array patterns,

variable patterns, label variable patterns, statement function patterns,

function patterns, subroutines patterns, and block names of s) such that

each of the following statements is true:

() Each member of the array patterns is an array pattern on
the names of the variable patterns of type INTEGER, and
no two members of the array patterns have the same name.
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(2) Each member of the variable patterns Is a variable
pattern, and no two members of the variable patterns have
the same name.

(3) Each member of the label variable patterns is a variable
pattern of type INTEGER.

(4) Each member of the statement function patterns is a
statement function pattern, and no two members of the
statement function patterns have the same name.

(5) Each member of the function patterns is a function
pattern, and no two members of the function patterns have
the same name.

(6) Each member of the subroutine patterns is a subroutine
pattern, and no two members of the subroutine patterns
have the same name.

(7) Each member of block names is a symbolic name.

(8) If n is the name of a member of one of the first six sets
(i.e., the array, variable, label variable, statement
function, function, or subroutine patterns of s), then n
is not the name of a member of any other member of the
first six sets nor is n a member of the block names.

(9) If n is a member of the block names of s, then it is not
the name of any member of any of the first six sets.

(10) If n is the name of an intrinsic function pattern, then
n is not a member of the block names of s nor is it the
name of any member of the array, variable, label
variable, statement function, or subroutine patterns of
S.

(11) If n is the name of an intrinsic function pattern and n
is the name of a member of the function patterns of s,
then the intrinsic function pattern of which n is the
name is a member of the function patterns of s.

Note. Most of the restrictions above regarding the use of names of

various types follow from the ANSI FORTRAN specifications. Here are the

major additional requirements we impose:

(1) the strict segregation of "normal" variables from those
variables involved in assigned GO TO or GO TO assignment
statements,

(2) the limitation of the use of intrinsic function names,
and

(3) the disjointness requirements on the names in the seven
sets above. (FORTRAN permits a limited amount of
overlapping, e.g., the variable names must be disjoint
from the array names, but not necessarily from the block
names.)
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Notation. has the form. x has the form y if and only if x and y

are sequences of characters and x is the result of replacing each

maximal, contiguous subsequence of y composed of lower case alphanumeric

characters with the current meaning of each of those subsequences. For

example, if a is "XY", ab is "UV", and z is "ABC", then

"IF UV(XY) = ABC" has the form

IF ab(a) = z

Definition. subscript. x is a subscript with respect to s if and

only if s is a syntactic environment and x is an unsigned INTEGER

constant, a token, or the name of some variable pattern of type INTEGER

in the variable patterns of s.

Definition. expression. Suppose s is a syntactic environment. We

define inductively the concept c is an expression with respect to s.

Simultaneously, we define the sort of c with respect to s and we define

the proper subexpressions of c. We shall omit the phrase "with respect

to" through this definition and wherever the appropriate s is obvious

from context.

(1) If c is an unsigned constant of type t, then c is an
expression, <t> is the sort of c, and c has no proper
subexpressions.

(2) If c is a token, then c is an expression, <INTEGER> is
the sort of c, and c has no proper subexpressions.

(3) If c is the name of a member of the variable patterns of
s, then c is an expression, the sort of c is the sort of
the variable pattern with name c in the variable patterns
of s, and c has no proper subexpressions. (Such a c is
called a variable reference with respect to s.]

(4) If c is the name of a member of the array patterns of s,
then c is an expression, the sort of c is the sort of the
array pattern with name c in the array patterns of s, and
c has no proper subexpressions. [Such a c is called an
array reference with respect to s.]

(5) For all a, t, i, j, and k, and for all subscripts el, e2,
and e3,

(a) if <a t t> is a member of the array patterns of s and c
has the form
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a(e 1 )

then c is an expression, the sort of c is <t>, and
the proper subexpressions of c are e1 and the proper
subexpressions of el;

(b) if <a t I j> is a member of the array patterns of s and c
has the form

a(el, e2 )

then c is an expression, the sort of c is <t>, and
the proper subexpressions of c are el, e2 , the
proper subexpressions of el, and the proper
subexpressions of e2; and

(c) if <a t i j k> is a member of the array patterns of s and c
has the form

a(e l, e2, e3)

then c is an expression, the sort of c is <t>, and
the proper subexpressions of c are el, e 2, e 3 , the
proper subexpressions of el, the proper
subexpressions of e2 , and the proper subexpressions
of e3 .

[Such a c is called an array element reference to a with
respect to s. The subscript sequence of c is <e >, <eI

e2> , or <e, e2 e3 >, according to whether case (al, (b),
or Cc) above obtains.]

(6) For all el, e2 , and t, if e I and e2 are expressions, t is
a type other than LOGICAL, the sort of both el and e2 is
<t>, and c has one of the forms

(el + e2 )
el - e 2 )

(e, * e2 )

(e, / e2)

then c is an expression, the sort of c is <t>, and the
proper subexpressions of c are el, e2 , the proper
subexpressions of el, and the proper subexpressions of
e2 . [Such a c is called an arithmetic expression with
respect to s, the operation symbol of c is +, -, *, or /
according to which of the aboie fourforms describes c,
and the argument sequence of c is <el e2>.]

(7) For all el, e2, t1, t2 and t , if e1 and e2 are
expressions, the sort of el Is <tl>, the sort of e2 is
<t2> , the sequence <t1 t2 t3 > is one of the sequences:
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<INTEGER INTEGER INTEGER>

<REAL INTEGER REAL>

<DOUBLE INTEGER DOUBLE>
<COMPLEX INTEGER COMPLEX>

<REAL REAL REAL>

<REAL DOUBLE DOUBLE>
<DOUBLE REAL DOUBLE>

<DOUBLE DOUBLE DOUBLE>

and c has the form

(el ** e2 )

then c is an expression, the sort of c is <t 3>, and the
proper subexpressions of c are el, e2 , the proper
subexpressions of el, and the proper subexpressions of

e2 . [Such a c is called an arithmetic expression with

respect to s, the operation s bof c is **, and the

argument sequence of c is <el e2>.1

(8) For all el, e2 , and t, if el and e2 are expressions, t is
a type, t is not LOGICAL, t is not COMPLEX, both el and

e2 have sort <t>, and c has one of the forms

(e I .LT. e2 )

el .LE. e 2 )

(e, .EQ. e 2 )

(e1 .NE. e2 )

(e1 .GT. e2 )

(e1 .GE. e2 )

then c is an expression, the sort of c is <LOGICAL>, and
the proper subexpressions of c are el, e2, the proper

subexpressions of el, and the proper subexpressions of

e2 . [Such a c is called a relational expression with
respect to s, the operation symbol of c is .LT., .LE.,
.EQ., .NE., .GT., or .GE. according to which of the above

six forms describes c, and the argument sequence of c is

<e I e2 >.]

(9) For all e I and e2 , if el and e2 are expressions of sort
<COMPLEX>, and c has the form

(e1 .EQ. e2 )

or

(e1 .NE. e2 )
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then c is an expression, the sort of c is <LOGICAL>, and
the proper subexpressions of c are el, e2 , the proper
subexpressions of el, and the proper subexpressions of
e2. [Such a c is called a relational expression with

respect to s, the operation symbol of c is .EQ. or
.NE. according to which of the two forms above describes
c, and the argument sequence of c is <e1 e2>.]

(10) For all e 1 and e2 , if el and e 2 are expressions and the
sort of both e I and e2 is <LOGICAL>, then if c has the
form

(el .OR. e2 )

or

(e, .AND. e2 )

then c is an expression, the sort of c is <LOGICAL>, and
the proper subexpressions of c are el, e2 , the proper
subexpressions of el, and the proper subexpressions of
e2. [Such a c is called a logical expression with

respect to s, the operation symbol of c is .OR. or
.AND. according to which of the above two forms describes
c, and the argument sequence of c is <e1 e2>.]

(11) For all e, if e is an expression, the sort of e is
<LOGICAL>, and c has the form

(.NOT. e)

then c is an expression, the sort of c is <LOGICAL>, and
the proper subexpressions of c are e and the proper
subexpressions of e. (Such a c is called a logical
expression with respect to s, the operation symbol of c
is .NOT., and the argument sequence of c is <e>.]

(12) For each symbolic name fn, type t, integer n greater
than 0, and for all sequences <e1 ... en> and <v1 ...
Vn> , if

(a) <fn t v1 ... Vn> is a member of the statement
function or the function patterns of s,

(b) for each integer i greater than 0 and
less than or equal to n, ei is an expression
and

(i) the type of ei is the type of vi,

(ii) the length of the sort of ei is the
length of the sort of vi, and
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(iii) for k greater than 1 and
less than or equal to the length of
the sort of v, if the kth element

of the sort o vi is an INTEGER
constant or token, then the kth element
of the sort of ei is that

constant or token, and otherwise,
for the m such that the name of
v is the kth element of the sort

v , em is the kth element
of the sort of el, and

(c) c has the form

fn(el, ..., en )

then c is an expression, the sort of c is <t>, and the
proper subexpressions of c are the members of <eI ...
e n> together with the proper subexpressions of each
member of <ei ... en>. [Such a c is called a function
reference to fn with respect to s, and the argument
sequence of c is <el ... en>. ]

Note. In Section V we comment on some of the differences between

our definition of an expression and the slightly more relaxed FORTRAN

definitions (e.g., our prohibition of implicit coercion, our requirement

of full parenthesization, and our requirement that arguments passed to

functions have exactly the right dimension and size).

Definition. subexpressions. x is a member of the subexpressions

of y if and only if for some syntactic environment s, x and y are

expressions with respect to s and either x is y or x is a proper

subexpression of y.

Definition. used as a subscript. x is used as a subscript in y

with respect to s if and only if s is a syntactic environment, y is an

expression with respect to s, and for some z, z is a subexpression of y,

z is an array element reference with respect to s, and x is a symbolic

name and a member of the subscript sequence of z.

Example. Suppose <A INTEGER 10> and <B INTEGER 10> are members of

the array patterns of a syntactic environment s and that <I INTEGER> and

<J INTEGER> are members of the variable patterns of s. Then I and J are

the only expressions used as subscripts in ((A(I)+BCJ))*A(3)).
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Note. We now define the statements in our FORTRAN subset. Our

subset includes the FORTRAN "DO statement," which is the standard

iterative construct. However, because the semantics of the DO statement

is naturally specified in terms of more primitive statements, we ignore

the DO statement in our definition of syntactic and semantic

correctness. After the definition of semantic correctness we describe

how we handle the syntax and semantics of DO statements.

Definition. statement. st is a statement with respect to s if and

only if s is a syntactic environment and one of the following statements

is true:

(1) For some member n of the block names of s and some
nonempty sequence <a, ... a > of distinct symbolic

names, each member o which s the name of a member of
the array or the variable patterns of s, st has the form

COMMON /n/al, a2 , ... , ak

[Such a statement is called a COMMON statement. In such
a statement, n is said to be declared as a COMMON block
and each ai is said to be declared to be in the COMMON
block n.]

(2) For some v, t, i, J, and k, one of <v t i>, <v t i j>, or
<v t i j k> is a member of the array patterns of s, and
st has (respectively) the form

DIMENSION v(i)
DIMENSION v(i, j)
DIMENSION v(i, j, k)

[Such a statement is called a DIMENSION statement. In
such a statement, v is declared to be an array.]

(3) For some v, v is the name of a variable, label variable,
array, statement function, or function pattern of s whose
type is INTEGER, REAL, DOUBLE, COMPLEX, or LOGICAL and st
has (respectively) the form

INTEGER v
REAL v
DOUBLE PRECISION v
COMPLEX v
LOGICAL v

[Such a statement is said to be a type statement. In
such a statement, v is declared to have type INTEGER,
REAL, DOUBLE, COMPLEX, or LOGICAL, respectively.]
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(4) For some v, v is the name of a nonintrinsic function
pattern of s, and st has the form

EXTERNAL v

[Such a statement is said to declare v to be EXTERNAL.]

(5) For some t, v, and exp, t is a type, v and exp are both
expressions of sort <t>, v is an array element reference
or a variable reference, and st has the form

v = exp

[Such a statement is called an assignment statement.]

(6) For some i and k, i is the name of a label variable
pattern of s, k is a label, and st has the form

ASSIGN k TO i

[Such a statement is called a GO TO assignment statement.
k and only k is used as a label in such a statement.]

(7) For some label k, st has the form

GO TO k

[Such a statement is called an unconditional GO TO
statement. k and only k is used as a label in such a
statement.]

(8) For some label variable pattern of s with name i and for
some nonempty sequence of labels <kl ... kn> , st has the
form

GO TO i, (ki, ... , kn)

(Such a statement is called an assigned GO TO statement.
k is used as a label in such a statement if and only if k
is a member of <k1 ... kn>.]

(9) For some variable pattern of s with name i and type
INTEGER and for some nonempty sequence of labels <k.
kn>, st has the form

GO TO (kl, ... , kn) , i

[Such a statement is called a computed GO TO statement.
k is used as a label in such a statement if and only if k
is a member of <k1 ... kn>.]

(10) For some labels k], k9 , and k3 , and for some expression
x of sort <INTEGER>, <EAL>, or <DOUBLE>, st has the form
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IF (x) kl, k2  k3

[Such a statement is called an arithmetic IF statement.
k I, k2 , and k and only k1 , k2 , and k3 , are used as
labels in suc a statement.]

(11) For some subroutine pattern of s with name sub and
(possibly empty) argument list <v1 ... vn>, for some
sequence <a, ... a > of expressions, and for all i
greater than 0 and Yess than or equal to n, each of the
following statements is true:

(a) the type of ai is the type of vi,

(b) the length of the sort of ai is the
length of the sort of vi, and

(c) for k greater than 1 and
less than or equal to the length of
the sort of v4 , if the kth element
of the sort of vi is an INTEGER
constant or token, then the kth element
of the sort of a i is that
constant or token, and otherwise,
for the m such that the name of
v is the kth element of the sort
o vi, am is the kth element
of the sort of ai, and

d) st has either the form

CALL sub

or the form

CALL sub(al, ... , an)

(according to whether n is 0 or greater than 0).
[Such a statement is a CALL of sub.]

(12) st has one of the forms

RETURN
CONTINUE
STOP
PAUSE

[Such a statement is called a RETURN, CONTINUE, STOP, or
PAUSE statement, respectively.]

(13) For some sequence of digits, n, whose length is greater
than 0 and less than 6, none of whose members is 8, and
none of whose members is 9, st has the form
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STOP n

or

PAUSE n

[Such a statement is called a STOP or PAUSE statement,

respectively.]

(14) For some expression x of sort <LOGICAL> and for some

st2 , st 2 is an assignment, GO TO assignment,
unconditional GO TO, assigned GO TO, computed GO TO,

arithmetic IF, CALL, RETURN, CONTINUE, STOP, or PAUSE

statement with respect to s, and st has the form

IF (x) st 2

[Such a statement is called a logical IF statement and

contains st 2. k is used as a label in such a statement
if and only if st 2 is an unconditional, computed, or

assigned GO TO, arithmetic IF, or GO TO assignment

statement and k is used as a label in st 2.]

(15) For some member <fin t <vl tl> ... <vn tn of the
statement function patterns of s, for some nonempty

sequence <<a1 t|> ... <an tn >> of distinct members of

the variable patterns of s, and for some expression x,
not a variable reference, whose sort is <t> and which has

no subexpression that is an array reference or an array

element reference, st has the form

f(a,, .... an )  = x

[Such a statement is called a statement function

statement and is a definition of f. x is the body of
such a statement and a,, ... , an are the arguments of

such a statement.]

(16) For some variable pattern of s with name f and type t

and for some nonempty sequence <a1 ... an> of names of
distinct members of the variable or array patterns of s,

f is not one of the ai, and either (a) t is not DOUBLE

and st has the form

t FUNCTION f(al, ... , an)

or (b) t is DOUBLE and st has the form

DOUBLE PRECISION FUNCTION f(al, ... , an)

[Such a statement is called a FUNCTION statement. The

arguments of the statement are a1 , ... , an. The name of

the statement is f and the type of the statement is t.]
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II
(17) For some symbolic name sub that is not a member of the

block names of s and is not the name of any member of the
array, variable, label variable, statement function,
function, or subroutine patterns of s, and is not the
name of any intrinsic function pattern, and for some
(possibly empty) sequence <a, ... a > of names of
distinct members of the variable and array patterns of s,
st has the form

SUBROUTINE sub

or

SUBROUTINE sub(ai, ... , an)

according to whether the sequence <a1 ... a > is empty
or not. (Such a statement is called a SUBROUTINE
statement. sub is the name of the statement. In the
first case, the statement has no arguments. In the
second case the arguments of the statement are al, ...,

a n.]

(18) st has the form

END

[Such a statement is called an END statement.]

Note. In Section V we compare the syntax of statements in our

subset with the syntax of FORTRAN statements.

Definition. executable statement. st is an executable statement

with respect to s if and only if st is an assignment, GO TO assignment,

unconditional GO TO, computed GO TO, assigned GO TO, arithmetic IF,

CALL, RETURN, CONTINUE, STOP, PAUSE, or logical IF statement with

respect to s.

Definition. used as a label variable. x is used as a label

variable in st with respect to s if and only if s is a syntactic

environment, x is a symbolic name, st is a statement with respect to s,

and one of the following statements is true:

(1) For some labels labl, ... , labn, st has the form:

GO TO x, (lab 1, ..., labn)
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(2) For some label lab, st has the form:

ASSIGN lab TO x

(3) For some statement st2 with respect to s, st is a logical
IF statement containing st2 and x is used as a label
variable in st2.

Definition. used on the second level. x is used on the second

level in st with respect to s if only if s is a syntactic environment, x

is a symbolic name, st is a statement with respect to s, and one of the

following statements is true:

(1) For some v and exp, st is an assignment statement of the
form

v = exp

and x is used as a subscript in v or in exp.

(2) For some labels labl, ... , and labk, st has the form

GO TO (labl, ... , labn), x

(3) For some labels labl, lab2 , and lab 3 , and for some
expression exp, st is an arithmetic IF statement of the
form:

IF (exp) labl, lab 2 , lab 3

and x is used as a subscript in exp.

(4) For some symbolic name subr and expressions a1 , ... , an,
st has the form

CALL subr(al, ... , an)

and x is used as a subscript in some ai .

(5) For some statement st2 and expression exp, st is a
logical IF statement of the form

IF (exp) st2

and either x is used as a subscript in exp or x is used
on the second level in st2.
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f Definition. label function. f is a label function for seq with

respect to s if and only if for some integer n, seq is a sequence of n

statements with respect to s, f is a one-to-one function, each member of

the domain of f is a label, each member of the range of f is an integer

greater than 0 and less than or equal to n, and for each label x in the

domain of f, the (f x)th member of seq is an executable statement with

respect to s.

Note. A label function is the formal device by which we associate

statement labels with some of the executable statements in a program.

For example, imagine that we have in mind a FORTRAN function or

subroutine (i.e., a "procedure subprogram"). Suppose that the 10th,

20th, and 30th statements of the program are the only statements labeled

and that the labels are 1000, 2000, and 3000 respectively. Then this

FORTRAN subprogram is conveniently characterized by three mathematical

objects: the syntactic environment s with respect to which the

expressions and statements in the program are formed, the sequence of

statements seq comprising the program, and the label function that maps

1000 to 10, 2000 to 20, and 3000 to 30 and is undefined elsewhere. We

will use such triples to characterize the subprograms in our subset.

Definition. subprogram. A triple <s seq labs> is a subprogram if

and only if each of the following statements is true:

(1) s is a syntactic environment.

(2) seq is a sequence of statements with respect to s.

(3) labs is a label function for seq with respect to s.

(4) The first statement of seq is a SUBROUTINE or FUNCTION
statement and no other statement of seq is a SUBROUTINE

or FUNCTION statement.

(5) For all ap, a, i, and d, if ap is a member of the array
patterns of s, a is the name of ap, i is 1, 2, or 3, the
ith member of the dimension list of ap is d, and d is a
symbolic name, then both a and d are arguments of the
first statement of seq.

(6) If the first statement of seq is a SUBROUTINE statement,
then for each pattern p in the array, variable, label
variable, statement function, or function patterns of s,
the name of p is declared in exactly one type statement
of seq and it is declared there to have the type of p.
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(7) If the first statement of seq is a FUNCTION statement,
then for each pattern p in the array, label variable,
statement function, or function patterns of s, or in the
variable patterns of s except for the pattern whose name
is the name of the first statement of seq, the name of p
is declared in exactly one type statement of seq, it is
declared there to have the type of p, and the name of the
first statement of seq is not declared in any type
statement of seq.

(8) The name of each member of the variable patterns of s is
used as a variable (other than as an actual) in some
statement of seq other than a type or FUNCTION statement.

(9) The name of each member of the variable patterns of s
that is an argument of the first statement of seq is used
as a variable (other than as an actual in a function
reference) in some statement of seq other than a type,
CALL, FUNCTION, or SUBROUTINE statement of seq.

(10) The name of each intrinsic member of the function
patterns of s occurs in some nontype statement of seq.

(11) If f is the name of a member of the function patterns of
s and f is not the name of an intrinsic function pattern,
then f is declared to be EXTERNAL in exactly one
statement of seq.

(12) Each member of the block names of s is declared as a
COMMON block in exactly one statement of seq.

(13) No symbolic name is declared to be in a COMMON block in
two COMMON statements of seq.

(14) No argument of the first statement of seq is declared to
be in a COMMON block by a COMMON statement of seq.

(15) If the first statement of seq is a FUNCTION statement,
then the name of that statement is not declared to be in
a COMMON block by a COMMON statement of seq.

(16) The name of each member of the statement function
patterns of s is defined in exactly one statement
function statement of seq.

(17) The name of each member of the array patterns of s is
declared in exactly one DIMENSION statement of seq.

(18) Every label used in a GO TO assignment, unconditional GO
TO, computed GO TO, assigned GO TO, arithmetic IF, or
logical IF statement of seq is a member of the domain of
labs.

(19) The name of each member of the subroutine patterns of s
is called in at least one CALL statement of seq.

(20) The name of each member of the label variable patterns
of s is used as a label variable in at least one
statement of seq.
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(21) At least one member of seq is a RETURN statement.

(22) The subsequence of seq obtained by deleting the first
and last statements of seq satisfies the following
conditions: (a) the type statements precede the other
statements, (b) the COMMON, EXTERNAL, and DIMENSION
statements precede the statement function and executable
statements, and (c) the statement function statements
precede the executable statements.

(23) For each stmt and fn, if stmt is a statement function
statement of seq with respect to s, the body of the
statement has a subexpression that is a function
reference to fn with respect to s, and fn is the name of
a statement function pattern of s, then the statement
function statement of seq that defines fn precedes stmt
in seq.

(24) The next to last statement of seq is an unconditional GO
TO, computed GO TO, assigned GO TO, arithmetic IF,
RETURN, or STOP statement.

(25) The last statement of seq is an END statement and no
other statement of seq is an END statement.

If <s seq labs> is a subprogram, then the name of <s seq labs> is

the name of the first statement of seq and the arguments of <s seq labs>

are the arguments of the first statement of seq.

Definition. subroutine subprogram. <s seq labs> is a subroutine

subprogram if and only if <s seq labs> is a subprogram and the first

member of seq is a SUBROUTINE statement.

Definition. function subprogram. <s seq labs> is a function

subprogram if and only if <s seq labs> is a subprogram and the first

member of seq is a FUNCTION statement.

Note. We now define "superficial context." Intuitively, a

superficial context is a sequence of subprograms such that each of the

functions and subroutines used by any of them is defined earlier in the

sequence, and such that certain "interprogram" relationships exist

between the subprograms.

Definition. superficial context. c is a superficial context if

and only if c is a (possibly empty) sequence of subprograms <<s 1 seq1

labs 1 > ... <sn seqn labsn> and each of the following statements is

true:

39



(1) For each s and for each <sub v, ... Vn> in the

subroutine patterns of si, there exists an integer j
greater than 0 and less than i such that the first
statement of seq. is a SUBROUTINE statement, sub is the
name of the firs statement of seqj, the first statement
of seqj has n arguments, and for each integer k greater
than 0 but less than or equal to n, the kth argument of
the first statement of seq. is the name of vk, and vk is
a member of either the array or variable patterns of sj.

(2) For each s and for each <f t v, ... Vn> in the function
patterns of si, either the pattern is an intrinsic
function pattern or there exists an integer j greater
than 0 and less than i such the first statement of seq.
is a FUNCTION statement, f is the name of the statemen ,
t is the type of the statement, the statement has n
arguments, and for all k greater than 0 but less than or
equal to n, the kth argument of the first statement of
seq. is the name of vk, and vk is a member of either the

array or variable patterns of sj.

(3) If sub. and sub. are distinct members of c, then the name

of sub- is not he name of subj or the name of any
intrinsic function pattern.

(4) If <s seq labs> is a member of c, then for no member sub.
of c is the name of sub. a member of the block names of 3

S.

(5) If <s. seq 1 labs.> and <sj seq. labs.> are distinct
members of c, anA if n is a meLber o the block names of
si and s' then the COMMON statement of seq that
declaresjn to be a COMMON block is identical to the
COMMON statement of seqj that declares n to be a COMMON

block. Furthermore, if a is a symbolic name that is
declared in seqi to be in the COMMON block n, then there
exists a pattern whose name is a that is either both a
member of the variable patterns of s and the variable
patterns of s. or is both a member the array patterns
of si and the 3array patterns of sj.

(6) If <si seqi labs.> and <s. seq labs > are members of c
and a is a symbolic name hat Is declared to be in a
COMMON block n by a member of seq. and is declared to be
in a COMMON block m by a member of seqj, then n is m.
Furthermore, a is not the name of any member of c nor a
member of the block names of any member of c.

Note. In Section V we comment upon some of the interprogram

relationships we impose in addition to those of FORTRAN.
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Note. In order to specify subprograms it is necessary to be able

to refer unambiguously to variables and arrays -- even variables and

arrays not declared in the subprogram itself. For example, suppose

subroutine MULT declares A as a "local" array (i.e., A is declared in

MULT but not in a COMMON). Suppose that MULT CALLs the subroutine TEST,

which declares A to be in COMMON block BLK and modifies that "global" A.

A reference to A in a FORTRAN statement in MULT is understood to be a

reference to the "local" A. It is not possible for a FORTRAN statement

in MULT to refer to the "global" A of TEST. However, since the value of

the "global" A may affect the computation of TEST and thus the

computation of MULT, it may be necessary in specifying MULT to refer to

the "global" A. To permit clear talk about such matters we now define

the "local" and "global" names of a subprogram and introduce the notion

of the "long" and "short" names of variables and arrays. An assertion

in MULT can refer to the value of the A in COMMON block BLK by using the

name BLK-A, which is the "long" name of the "global" A.

Definition. local names. n is a local name of a subprogram <s seq

labs> if and only if n is the name of a member of the array, variable,

or label variable patterns of s, and n is not declared by any COMMON

statement of seq to be in any COMMON block.

Definition. COMMON names. n is a COMMON name of a subprogram <s

seq labs> if and only if for some b and some v, b is a member of the

block names of s, v is declared by some COMMON statement of seq to be in

the COMMON block b, and n has the form

b-v

Definition. short name. n is the short name of m if and only if n

is a symbolic name and either (a) m is a symbolic name and n is m or (b)

for some symbolic name b, m has the form b-n.

Definition. long name. n is the long name of m with respect to

sub if and only if sub is a subprogram and either (a) n is a local name

of sub and n is m or (b) n is a COMMON name of sub and m is the short

name of n.
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Example. Suppose we have in mind a subprogram sub in which ARRAY

Is declared as an array but is not in COMMON, and SIZE is declared as a

variable in the COMMON block named BLK. Then ARRAY is a local name of

sub. BLK-SIZE is a COMMON name of sub. The short name of ARRAY is

ARRAY. The short name of BLK-SIZE is SIZE. The long name of ARRAY with

respect to sub is ARRAY. The long name of SIZE with respect to sub is

BLK-SIZE.

Note. We now define the "global names" of a subprogram and the

"global sort" of a long name. Intuitively, the global names of a

subprogram are the global variables and arrays of the subprogram and all

the subprograms it CALLs. Of course, the unambiguous long names of the

variables are used.

Definition. global names. If c is a superficial context and sub

is a member of c, then the global names of sub with respect to c are the

COMMON names of sub together with the global names of each sub. of c

such that the name of sub, is the name of a nonintrinsic function or

subroutine pattern of sub.

Definition. global sort. t is the global sort of n in sub with

respect to c if and only if c is a superficial context, sub is a member

of c, and one of the following is true:

(1) n is a local name of sub and t is the sort of the array,
variable, or label variable pattern in sub with name n.

(2) n is a global name of sub with respect to c, n has the
form b-v for some b and v, and t is the sort of the array
or variable pattern with name v in any member of c in
which v is declared to be in block b.

Note. We next define the notion that a variable or an array is

"possibly smashed" by a subprogram. The intuitive idea is that v is

possibly smashed in a subprogram if execution of the subprogram appears

sometimes to alter the value of v either by assigning to it or by

CALLing a subroutine that possibly smashes it. The notion of "possibly

smashed" is used in a variety of places in this document. For example,

it is involved in the question of whether a subroutine CALL violates the

FORTRAN prohibition against aliasing. The notion is also used to extend
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the output assertion of a subprogram by the implicit assertion that

variables not possibly smashed are unmodified by CALLs of the

subprogram.

There is one subtle aspect to the definition of "possibly smashed."

Although we check that a variable might be smashed by the execution of a

subroutine subprogram, we do not check that it is possibly smashed by

the execution of a function subprogram. The reason is that when we

define a "syntactically correct context" we will require that function

subprograms not possibly smash any variables except locals that are not

arguments (i.e., functions have no side effects). Thus, provided one is

dealing with a "syntactically correct context," our definition of

"possibly smashed" indeed guarantees that no variable of the calling

program is modified by the execution of a function subprogram.

Definition. possibly smashed. v is possibly smashed by <si seqi

labsi> in c through st if and only if (a) c is a superficial context,

(b) <si seq1 labs 1> is a member of c, (c) st is a statement of seqi, and

(d) for some u, u is the short name of v, v is a global name or a local

name of <si seqj labsi>, and one of the following statements is true:

(1) v is a local or COMMON name of <si seq4 labs >, and for
some expressions xl, x2 , x3 , and e with respect to s,, st
has of one of the Forms

u - e

u(x1) - e

u(x1, x2 ) = e

u(Xl, x2 , x3 ) = e

(2) v is a local name of <si seqi labsi>, and for some k, st

has the form

ASSIGN k TO u

(3) For some symbolic name sub, and expressions el, ... , and
en with respect to si, st has the form

CALL sub
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or

CALL sub(el. ..., e n)

and for the member <s. seq. labs > of c with the name
sub, either (a) v is I glogal nale of <s seq labs,> and
v is possibly smashed by <s seq4 labs.> through some
member of seqj or (b) v is a loc or OMMON name of <si
seq i labi>, and for some i greater than 0 and less than
n+l, ei is a variable reference or array reference to u,
and the ith argument of <s seqj labsj> is possibly
smashed by <sj seqj labsj> in c through some member of

seq .
(4) For some statement st2 and expression exp, st is a

logical IF statement of the form

IF (exp) st2

and v is possibly smashed by <si seqi labsi> in c through
st 2 .

[If we say "v is possibly smashed by sub in c" (omitting "through st"),

we mean "for some st, v is possibly smashed by sub in c through st."]

Note. We complete the syntactic characterization of our FORTRAN

subset by defining a "syntactically correct context" to be a sequence of

subprograms that, in addition to being a superficial context, contains

no function subprogram that causes side effects and no CALL statement

that violates certain aliasing restrictions. In Section V we comment

upon these restrictions and their relationship to FORTRAN.

Definition. syntactically correct context. c is a syntactically

correct context if and only if c is a superficial context and each of

the following statements is true:

(1) For each function subprogram sub of c, no global name of
sub nor argument of sub is possibly smashed by sub in c.

(2) In each subroutine subprogram <s seq labs> of c, no
argument of <s seq labs> that is a member of the
dimension list of an array pattern of s is possibly
smashed by <s seq labs> in c.

(3) For each <s seq labs> and sub in c, for each sub, for
each sequence of expressions Le ... en> with respect to
s, and for each statement in seq of the form
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CALL sub(el, ... , en)

if sub is the name of sub then for each integer i
greater than 0 and less ttan or equal to n, if the ith
argument of sub is possibly smashed by sub, in c, then
for some symbolic name v each of the following is true:

(a) ei is either a variable reference to v
or an array reference to v,

(b) the long name of v with respect to <s seq labs>
is not a global name of subj, and

(c) for each integer j greater than 0, not equal
to i, and less than or equal to n, e. is not
a variable, array, or array element eference to v.

(4) For each <s seq labs> and sub. in c, for each m, sub, and

sequence of expressions <el ... e > with respect to s,and for each statement in seq of t e form

CALL sub(el, ... , en)

if sub is the name of sub. and m is a COMMON name of <s
seq labs> that is possiblI smashed by sub. in c, then for
k greater than 0 and less or equal to n, Jk is not a
variable, array, or array element reference to the short
name of m.

(5) For each <s seq labp> in c, if x is a COMMON or local
name of <s seq labs> and the short name of x is used on
the second level in some statement of seq, then x is not
possibly smashed by <s seq labs> in c through any CALL
statement of <s seq labs>.
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VI FLOW GRAPHS

In this section we describe the flow of control through a FORTRAN

subprogram.

Informally, the flow is specified by an "ordered, directed graph"

whose nodes are associated with the statements of the subprogram. A

proof of correctness involves the consideration of all "paths" through

the graph. To aid the consideration of the possibly infinite number

paths created by loops, the exploration process utilizes a "cover" of

the graph, which is a subset of the nodes sufficient to "cut" every

loop. Given a graph and a cover for it, it is then possible to identify

a finite number of paths through the graph, called the "Floyd paths,"

such that the correctness of these paths implies the correctness of all

paths through the graph. We make these graph theoretic terms precise

before discussing the graphs for subprograms.

Definition. ordered, directed graph. <n e> is an ordered directed

graph if and only if n is a set and e is a function whose range is a

subset of n and whose domain is a subset of the Cartesian product of n

with the positive integers. Each member <<x i> z> of e is an edge of

the graph, x is the head of the edge, z is the tail of the edge, and <<x

i> z> is the ith edge leading from x.

Definition. path. If g is an ordered, directed graph, then p is a

path in g if and only if p is a (possibly empty and possibly infinite)

sequence <el e2 ...> of edges of g and for each member ei+I of p, if i>0

then the tail of ei is the head of ei+l.

Definition. cover. If g is an ordered, directed graph, then c is

a cover for g if and only if c is a subset of the nodes of g and for

each infinite path p in g the tail of some element of p is a member of

c.
* Readers interested in a more tutorial sketch of the application of the

Floyd method should see [5].
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Definition. Floyd path. p is a Floyd path of g for c if and only

if g is an ordered, directed graph, c is a cover for g, p is a nonempty,

finite path in g, the head of the first and the tail of the last members

of p are members of c, and for each integer i greater than I and less

than or equal to the length of p, the head of ith member of p is not a

member of c.

Definition. flow graph. The flow graph of a subprogram <s seq

labs> is the pair <n e> such that each of the following is true:

(I) n is the set of all integers j such that the absolute

value of j is less than or equal to the length of seq and
either j is positive and the jth member of seq is an
executable statement or j is negative and the -jth member
of seq is a logical IF statement.

(2) e is the set of all <<i j> k> such that for some st

(a) i and k are members of n, and

(b) either i is positive and st is the ith
statement of seq or i is negative and the
-ith statement of seq contains st, and

(in either case) one of the following
statements is true:

(i) st is an assignment, GO TO assignment,
CALL, CONTINUE, or PAUSE statement, j
is 1, and k is 1iI+l;

(ii) for some label m, st has the form

GO TO m

j is 1, and k is (labs m);

(iii) for some labels m, ... , and mn,

st has the form

GO TO i, (ml, ... , Imn)

or

GO TO (ml, ... , mn), -

j is greater than 0 but less than or

equal to n, and k is (labs mj);
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(iv) for some labels m 1 , m2 , and m 3 , and
for some expression e, st has the form

IF (e) ml, m 2 , m 3

and j is 1, 2, or 3, and k is,
respectively, (labs ml), (labs m 2 ), or
(labs m3 ); or

(v) for some expression e and some statement
st', st has the form

IF (e) st'

j is I or 2, and k is, respectively,
-i or i+l.

Definition. statement of. If <s seq labs> is a subprogram and n

is a member of the nodes of the flow graph of <s seq labs>, then the

statement of n is the nth member of seq if n is positive and the

statement contained in the -nth member of seq if n is negative.

Note. A node n of the flow graph g of a subprogram is the head of

some edge of g if and only if the statement of n is neither a RETURN or

a STOP statement.

Definition. reachable. m is reachable from n in g if and only if

g is an ordered, directed graph, m and n are nodes of g, and there

exists a finite path p of g such that the head of the first edge of p is

n and the tail of the last edge of p is m.

Note. To enforce the ANSI 66 requirement that every executable

statement in a subprogram "can" sometimes be executed, we will require

that every node in the flow graph of the subprogram be reachable from

the node corresponding to the first executable statement.
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VIII TERMS

Before we discuss the specification of subprograms we define the

logical theory in which we are operating. For example, there is an

intuitive feeling that for every FORTRAN expression (e.g., (X+A(I)))

there must be a term in the logic that in some sense denotes the value

of that expression. The verification condition generator must construct

for each FORTRAN expression the corresponding term of the logic.

Therefore, at the very least we must define the well-formed terms of the

logic and specify the correspondence between FORTRAN expressions and

terms.

Notation. expressions versus terms. Some logicians use the words
"expression" and "term" interchangeably. In this document we use the

wo-d "expression" exclusively to refer to FORTRAN expressions with

respect to a given syntactic environment, as previously defined. We use

the word "term" exclusively to refer to well-formed terms in the

mathematical logic in which we operate.

Note. We first specify the "basic FORTRAN theory," which is a

logic produced by extending the logic described in [5] and [6]. The

syntax of the logic is the prefix syntax used by Church's lambda-

calculus. For example, we write (MOD X Y) to denote the term that

others might denote by MOD(X,Y), mod(X,Y), or X mod Y.

In addition to a version of the propositional calculus with

function symbols and equality, the logic provides a principle under

which new types of inductively constructed objects may be introduced, a

principle under which new recursive functions may be defined, and a

principle of induction.

The logic does not provide the usual notion of predicates or

relations. Without loss of generality we use functions exclusively; a
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property is expressed by writing down a term that is either equal to the

object (FALSE) or not equal to the object (FALSE) according to whether

the property fails to hold or holds. (The constant (TRUE) is a commonly

used object not equal to (FALSE).) For example, the function ZLESSP, of

two arguments, returns (TRUE) or (FALSE) according to whether its first

argument is less than its second.

The logic does not provide explicit quantification. Variables in

formulas are implicitly universally quantified. To express certain

forms of quantification it is necessary to define new recursive

functions. For example, to assert that some members of a finite

sequence have a given property one may introduce the recursive function

that maps over the sequence and checks for the property.

The basic FORTRAN theory contains some of the function symbols used

in the transcription of FORTRAN expressions into mathematical terms.

For example, it contains the function ZPLUS that returns the sum of its

two integer arguments, and the previously mentioned ZLESSP.

Definition. basic FORTRAN theory. The basic FORTRAN theory is the

logical theory obtained by extending the theory defined in [5] and (61

as specified in Appendix A.

Note. We now make some definitions that make it easier to refer to

certain function symbols of the basic FORTRAN theory.

Definition. FORTRAN recognizers. The FORTRAN recognizer for a

type INTEGER, REAL, DOUBLE, COMPLEX, or LOGICAL is (respectively) the

function symbol ZNUMBERP, RNUMBERP, DNUMBERP, CNUMBERP, or LOGICALP.

Definition. function symbol for t and op. For the combinations of

type t and operator symbol op given below, the function symbol for t and

op is defined by the following table:
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function symbol for t and op

op\t I INTEGER REAL DOUBLE COMPLEX

+ ZPLUS RPLUS DPLUS CPLUS

- ZDIFFERENCE RDIFFERENCE DDIFFERENCE CDIFFERENCE
* ZTIMES RTIMES DTIMES CTIMES

/ ZQUOTIENT RQUOTIENT DQUOTIENT CQUOTIENT
.LT. ZLESSP RLESSP DLESSP
.LE. ZLESSEQP RLESSEQP DLESSEQP
.EQ. ZEQP REQP DEQP CEQP
.NE. I ZNEQP RNEQP DNEQP CNEQP
.GE. ZGREATEREQP RGREATEREQP DGREATEREQP
.GT. I ZGREATERP RGREATERP DGREATERP

Definition. exponentiation function symbol. The exponentiation

function symbol for certain combinations of types t, and t2 is defined

by the following table:

exponentiation
tI  t2  function symbol

INTEGER INTEGER ZEXPTZ
REAL INTEGER REXPTZ
DOUBLE INTEGER DEXPTZ
COMPLEX INTEGER CEXPTZ
REAL REAL REXPTR
REAL DOUBLE REXPTD
DOUBLE REAL DEXPTR
DOUBLE DOUBLE DEXPTD

Note. The next five definitions make it easier to describe certain

terms in our logic.

Definition. list term and LENGTH. We define the list term for a

sequence of terms <sl ... sn> to be the term (LIST s, ... Sn). If t

is the list term for a sequence of length n, then the LENGTH of t is n.

Definition. conjunction. The conjunction of the terms s,, s2,

sn is the term (AND sl s2 ... Sn).

Definition. disjunction. The disjunction of the terms sl, s2,

sn is the term (OR sl s2 ... Sn).
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Definition. implication. If u and v are formulas, the implication

from u to v is the formula (IMPLIES u v).

Definition. lexicographic comparison. If t, and t2 are terms then

the lexicographic comparison of t1 with t2 is (LEX t1 t2).

Note. The specification of a given FORTRAN subprogram begins with

the production by the user of a "FORTRAN theory" rather than the basic

FORTRAN theory. As a rule the basic FORTRAN theory is too primitive to

permit the expression of the specifications of interesting programs

without first being extended by the definition of new functions. For

example, to specify a matrix multiplication subroutine, the user might

first extend the basic FORTRAN theory by the definition of the usual

mathematical operations and relations on vectors and matrices.

Definition. FORTRAN theory. A FORTRAN theory is an extension of

the basic FORTRAN theory. The extension may add no axiom (e.g.,

definition) in which the function symbol START is used.

Note. The user supplied FORTRAN theory must be extended by the

addition of several new function symbols before we arrive at the theory

in which the verification conditions will be proved. For example, for

each function subprogram referenced in the subprogram being verified, we

will add an undefined function symbol whose value is as specified by the

(previously accepted) input/output assertions for the function

subprogram. These function symbols are used in the terms representing

the values of FORTRAN expressions. To ensure that this extension makes

sense (e.g., does not attempt to "redefine" an existing function) we

make the next definition.

Definition. appropriate. T is an appropriate theory for c if and

only if each of the following statements is true:

(1) T is a FORTRAN theory.

(2) c is a syntactically correct context.

(3) NEXT and BEGIN are not function symbols of T.

(4) For all <s seq labs> in c, if v is the long name of a
member of the variable, label variable, or array patterns
of s, then v is not the name of a function symbol of T,
nor is v NEXT or BEGIN.
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(5) If v is the name of a function subprogram of c, then v is
not the name of a function symbol of T, nor is v NEXT or
BEGIN.

Note. For reasons indicated previously, we require that no

function subprogram of c have as its name the name of a function symbol

of T. But certain specific function symbols are required to be in T

(e.g., EQUAL, ZPLUS, ZEXPTZ) and these symbols are acceptable FORTRAN

names. Thus, this restriction technically prevents the use of our

system to verify FORTRAN programs involving functions with those "built-

in" names because no "appropriate theory" exists. Such problems are

easily avoided by systematic renaming of the mathematical functions used

to denote the values of FORTRAN entities. However, to avoid making this

document even more obscure, we here agree to live with the naming

limitations imposed above.

Given a theory T appropriate for a syntactically correct context c,

we now describe three incremental extensions of T, the last of which is

the theory in which one must prove the verification conditions for a

subprogram of c. The three extensions are obtained by adding certain

new function symbols, including one for each global name and argument,

local name, and nonintrinsic function subprogram used in the subprogram

being verified. By producing the final theory incrementally and giving

names to the intermediate versions we make it possible to say "x is a

term" of one of these intermediate theories, which is a convenient way

of saying that x contains no function symbols except those in the

specified theory.

Definition. primary verification extension. T2 is the primary

verification extension of T, for c and sub if and only if Ti is an

appropriate theory for c, sub. is a member of c, and T2 is the extension

of T, that results from adding as a function symbol of one argument each

of the global names of sub, and each of the arguments of subj.

Definition. secondary verification extension. T2 is the secondary

verification extension of T, for c and subj if and only if T1 is an

appropriate theory for c, subj is a member of c, and T2 is the extension
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of the primary verification extension of T, that results from adding as

a function symbol of one argument each of the local names of subj that

is not an argument of subj.

Definition. tertiary verification extension. T2 is the tertiary

verification extension of T, for c and sub. if and only if T I is an

appropriate theory for c, subj is a member of c, and T2 is the extension

of the secondary verification extension of T, that results from both of

the following:

(1) Adding NEXT and BEGIN as function symbols of 1 and 0
arguments respectively.

(2) Adding as a function symbol the name of each function
pattern of the syntactic environment of sub. that is not
an intrinsic function pattern and by providing each such
function symbol f with the number of arguments that is
the sum of (a) the number of arguments of the function
pattern with name f and (b) the number of global names of
the member of c whose name is f.

Note. If ARRAY is a local name of a subprogram, our convention is

to denote the value of ARRAY at a given point in the execution of the

subprogram by a term of the form (ARRAY state), where state is a

constant term that may be thought to denote (in a completely arbitrary

way) the state of the processor. The only use of states is to permit us

to use terms such as (ARRAY state) to refer to the various values taken

on by program variables during execution. We formalize the notion of

"state term" later. To refer to the current value of ARRAY in an

invariant, the user writes (ARRAY STATE). It is understood that the

current state term will be substituted for STATE when the invariant is

encountered by the verification condition generator. It is important

that STATE not occur arbitrarily within an invariant since that would

permit the invariant to exploit the structure of what amounts only to a

naming convention. The next definition provides us with a succinct way

of saying that some particular set of terms occur only as arguments to

those functions denoting the values of program variables.

Definition. incarcerates. p incarcerates v with respect to c and

sub. if and only if c is a syntactically correct context, subj is member
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j of c, v is a set, and for some theory T appropriate for c, p can be

obtained from some term p' of T that does not have any member of v as a

subterm by simultaneously replacing variables with terms of the form (f

v') where f is a global or local name of subj and v" is a member of v.

Example. Suppose T is a theory appropriate for c and c contains

some subpr.gram subj and CNT is a local name of sub Then the term

(ZEQP (CNT NEWSTATE)
(ZPLUS I (CNT STATE)))

incarcerates {NEWSTATE, STATE) with respect to c and subi, because the

term can be obtained by instantiating

(ZEQP U
(ZPLUS I V))

by replacing U with (CNT NEWSTATE) and V with (CNT STATE). Since the

following term cannot be obtained by such an instantiation, it does not

incarcerate (NEWSTATE STATE):

(ZEQP (CNT NEWSTATE)
(ZPLUS STATE (CNT STATE)))

Note. We now formally define the mapping from FORTRAN expressions

to terms in a FORTRAN theory.

Definition. statification. If c is a syntactically correct

context, <s seq labs> is a member of c, and e is an expression with

respect to s, then the statification of e (denoted [e) when c and <s seq

labs> are obvious from context) is defined, inductively, as follows.

(1) If e is a constant then
if e is .TRUE., then (e] is (TRUE),
if e is .FALSE., then (e] is (FALSE),
and otherwise [e] is e.

(2) If e is a token, then [e] is (e).

(3) If e is a variable or array reference, then Ce] is the
term (e' STATE), where e' is the long name of e with
respect to <s seq labs>.
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(4) If e is an array element reference, then
for each v and expression xl, if e has the form V(xl) ,

then [el is (ELTI [v] [xl),
for each v and for all expressions x, and x2,

if e has the form v(xl, x2)
then [e is (ELT2 I [X ] [x2]), and

for each v and for all expressions xl, x2 , and x3,
if e has the form v(xl ix2, x3 ),
then [e] is (ELT3 [v][] 1  x21 [x31).

(5) If e is an arithmetic or relational expression with
argument sequence <xI x2 > and operation symbol op, op is
not **, the sort of x, and x2 is <t>, and f is the

function symbol for t and op, then [el is (f [xl] [x2 ]).

(6) If e is an arithmetic expression with operation symbol **

and argument sequence <xl x2>, the sort of x, is <tl> ,
the sort of x2 is <t2>, and f is the exponentiation
function symbol for tI and t 2' then [e] is (f [x1 ] [x2]).

(7) For all expressions x, and x2 , if e has one of the forms

(xI .AND. x )
(xi .OR. ~
(.NOT. x 1)

then [e] is

(AND [x1] [x2])

(OR [xl] [x2)
(NOT [xl])

respectively,

(8) For each f that is the name of a statement function
pattern of s and f3r all expressions xl, ..., and xn, if

e has the form

f(xI , ..., xn)

then [e] is the statification of the result of
simultaneously replacing each of the arguments of the
definition of f in seq with the corresponding x i in the
body of the definition of f in seq.

(9) For each f that is the name of an intrinsic function
pattern and for all expressions x, ..., and xn, if e has
the form

f(x 1 ,  ... ,I xn)

then [el is (f [xl] ... [xn])
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(10) Finally, for each f that is the name of some

nonintrinsic function pattern of s and for all
expressions xl, ... , and Xn, if e has the form

f(xl, ....I Xn),

then Ee] is

(f Ix1 ] ... [xn] (k I STATE) ... (km STATE))

where the ki are the global names, in alphabetical order,
of the member of c whose name is f.

Example. Suppose PROD is the name of a REAL valued function

subprogram, subfn, of c. Suppose that subfn takes one argument and

declares Al and A2 to be in COMMON block BLK. Suppose further that BLK-

Al and BLK-A2 are the only global names of subfn. Finally, suppose that

VECT is a one-dimensional array declared as a local name in some other

subprogram, sub, of c, that I is declared in sub to be an INTEGER

variable in COMMON block TEMP, that MAX is a local name of sub, and that

(PROD(MAX) VECT(I))

is an expression with respect to the syntactic environment of sub. Then

the statification of the above expression is:

(RPLUS (PROD (MAX STATE)

(BLK-AI STATE)
(BLK-A2 STATE))

(ELTI (VECT STATE) (TEMP-I STATE))).

Notation. ix, y] is the result of replacing the variable STATE with y
in the statification of x.

Definition. term substitution. A finite set s of ordered pairs is

said to be a term substitution provided that for each ordered pair <u v>

in s, u and v are terms and no other member of s has u as its first

component. The result of applying a term substitution s to a term t is

recursively defined as follows:

For each v, if <t v> is a member of s,
the result is v;

else if t is a variable, the result is t;
else t is of the form (f t.. t n )

and the result is (f t . tn '),
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where tY is the result of applying
the term substitution s to t .

Example. The result of applying the term substitution <<X (G)> <(F

X) (H X)>> to the term (PLUS X (F X)) is the term (PLUS (G) (H X)). In

particular, the result is not (PLUS (G) (F (G))).

60



II

I
IX SPECIFIED CONTEXTS

We now begin discussing the specification of the subprograms of a

syntactically correct context. We first formalize the notion of

specifying the input and output assertions of the subprograms.

Intuitively, if a subprogram has been proved correct, then whenever it

is legally invoked (e.g., by a CALL statement we consider syntactically

and semantically correct) and the input assertion is true just before

the execution of the first statement (that is, after the association of

the actuals with the formals), then in the execution of the subprogram a

RETURN will eventually be executed, and at the inception of the RETURN

statement the output assertion will be true.

Definition. specification for a context. A pair of functions

<inpt outpt> is a specification for c and T if and only if each of the

following statements is true:

(1) T is an appropriate theory for c.

(2) The domain of inpt is the set of members of c and for
each member sub of c, the value, v, of inpt on sub is a
term in the primary extension of T for c and sub, and v
incarcerates <STATE) with respect to c and sub.

(3) The domain of outpt is the set of members of c, and for
each member sub of c, the value, v, of outpt on sub is a
term in the primary extension of T for c and sub, and

(a) if sub is a subroutine subprogram, then v
incarcerates (STATE, NEWSTATE) with respect to
c and sub, and for every subterm of v of the
form (f NEWSTATE), f is possibly smashed by sub
in c, and

(b) if sub is a function subprogram, then v
contains no variables except STATE and ANS and
v incarcerates (STATE) with respect to c and
sub.

Definition. input assertion and output assertion. Suppose we have

in mind a given inpt, outpt, c and T, such that <inpt outpt> is a
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*pecification for c and T. If sub is a member of c, we define the input

assertion of sub to be the formula that is the value of inpt on sub, and

we define the output assertion of sub to be the formula that is the

value of outpt on sub.

Note. We now formalize the notion of attaching to certain

statements in a subprogram the "Floyd invariants." Intuitively, these

invariants are assertions about the values of program variables and are

supposed to be true every time the processor encounters the statement.

In addition to proving that each subprogram meets its input/output

specification, provided it terminates, we desire to prove that each

subprogram terminates when called in an environment satisfying its input

assertion. To do this we require the user to specify the amount of

"time" the program will run by attaching "clocks" to various statements.

Intuitively, the "input clock" says how long the program will run (as a

function of the initial environment) and the interior clocks say how

much time remains (as a function of the variables in the current state).

The verification conditions force us to prove that each time a clock is

encountered, strictly less "time" remains on it than on the previously

encountered clock. Provided the "less than" relation used is well

founded, proof of the clock verification conditions is sufficient to

imply termination of the program.

It is often convenient for clocks to be functions into the natural

numbers and to be compared with the well-founded Peano "less than"

relation. However, such a scheme makes it difficult to prove

termination for programs involving nested loops because the necessary

clocks often involve multiplication, exponentiation, and so on. To

mitigate this problem somewhat we make the convention that each clock be

an n-tuple of natural numbers (for some value of n fixed by the user for

a given subprogram), and we compare these n-tuples with the function

LEX, defined in the basic FORTRAN theory.

For example, to prove the termination of a nested loop, the outer

of which counts I down somehow while changing J arbitrarily, and the

inner of which counts J down while holding I fixed, the clock (LIST (I

STATE) (J STATE)) suffices.
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Definition. annotation. A sequence of three elements <inpclk

lpinv Ipclk> is called an annotation with respect to T, c, and sub if

and only if each of the following statements is true:

(1) T is an appropriate theory for c.

(2) sub is a member of c.

(3) inpclk is the list term for some sequence of terms in the
primary extension of T for c and sub, inpclk has no
variable subterm, and inpclk incarcerates ((START)) with
respect to c and sub.

(4) lpinv is a function and for some w, w is the domain of
lpinv, w is a subset of the nodes of the flow graph of
sub, the statement of each member of w is a CONTINUE
statement, w covers the flow graph of sub, and for each
member r of the range of lpinv, r is a term of the
secondary extension of T for c and sub and r incarcerates
{STATE, (START)> with respect to c and sub.

(5) Ipclk is a function whose domain is the domain of lpinv
and for each member r of the range of Ipclk, r is the
list term of a sequence of terms in the secondary
extension of T for c and sub, r and inpclk have the same
LENGTH, r incarcerates {STATE, (START)) with respect to c
and sub, and has no variable subterm except STATE.

Convention. For the remainder of this section, let us fix upon a

T, c, sub, s, seq, labs, inpt, outpt, inpclk, lpinv, and lpclk such that

each of the following statements is true:

(1) T is an appropriate theory for c.

(2) <s seq labs> is a member of c and sub is <s seq labs>.

(3) <inpt outpt> is a specification of c.

(4) <inpclk lpinv Ipclk> is an annotation for sub.

Definition. input clock, loop invariant, and loop clock. The

input clock is inpclk. If node is a member of the domain of lpinv, then

the loop invariant for node is the value of the function lpinv applied

to node, and the loop clock for node is the value of the function lpclk

applied to node.

Note. We now introduce the ideas of the "partially instantiated"

input and output assertions. These assertions are attached to the

entrances and exits of the subprogram.
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Definition. partially instantiated input assertion. If sub is a

function subprogram, then the partially instantiated input assertion is

the conjunction of (a) the result of substituting (START) for STATE in

the input assertion of sub and (b) the term (DEFINEDP (a (START))) for

each a that is an argument of sub and is not the name of an array

pattern in s. If sub is a subroutine subprogram, then the partially

instantiated input assertion is the conjunction of (a) the result of

substituting (START) for STATE in the input assertion of sub and (b) the

term (DEFINEDP (a (START))) for each a that is both an argument of sub

and a member of the dimension list of some array pattern of s.

Note. (START) is the arbitrarily chosen constant denoting the

state at the beginning of the execution of the subprogram being

verified.

We require that all nonarray arguments to function subprograms be

defined, and we automatically extend the user's input assertion to that

effect. FORTRAN does not have such a requirement. We have already

adopted the requirement that no function subprogram have side effects,

including side effects on arguments. Thus, an undefined argument is

useless: it cannot be referenced in the subprogram until it is smashed

by an assignment or CALL, and it cannot be smashed. The question of the

definedness of arrays never comes up. Instead, one is interested in the

definedness of particular elements of arrays. Rather than automatically

extend every function's input assertion with the draconian requirement

that every element of every array be defined, we put no built-in

requirements on arrays and thus forc e dfe e t in his input

assertions whatever hypotheses are needed about particular array

elements.

Definition. partially instantiated output assertion. If sub is a

function subprogram, fn is the name of the first statement of seq, and p

is the output assertion of sub, then the partially instantiated output

assertion is the result of substituting (START) for STATE and (fn STATE)

for ANS in

64



I
j(AND (DEFINEDP ANS)

p)

If sub is a subroutine subprogram, then the partially instantiated

output assertion is the result of substituting (START) for STATE and

STATE for NEWSTATE in the output assertion of sub.

Note. NEWSTATE in an output assertion of a subprogram being

verified is understood to refer to the state at the inception of the

RETURN statement. That is, on each exit path from the subprogram the

verification condition produced will conclude with the partially

instantiated output assertion, further instantiated by the replacement

of NEWSTATE by the state term at the end of the path.

The user writes the variable ANS in the output assertion of a

function subprogram when he wishes to refer to the value delivered by

the subprogram. The FORTRAN convention for defining the value of a

function is to assign the desired result to the variable with the same

name as the function. Thus, in the theory in use when we verify a

function subprogram with name fn, fn is a function of one argument, the

state of the processor, and denotes the value of a FORTRAN variable.

For the verification of fn we replace ANS in the output assertion by (fn

NEWSTATE).

Consider what happens when we have verified fn and are now

producing the verification conditions for a subprogram that calls fn.

In the theory in use when we verify a program that calls fn, fn is a

function of n+m arguments (where n is the number of arguments of the

FORTRAN subprogram fn and m is the number of its global names). When we

use the output assertion of fn to constrain the value delivered by the

expression fn(el, ... , en), we replace ANS by [fn(el, ... , en)] and then

replace STATE by the current state term.

The next definition makes it more convenient to describe the

verification condition generator. It is useful to extend the flow graph

of the subprogram by imagining the insertion into the program of a

CONTINUE statement immediately preceding what was previously the first
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executable statement of the program. We then attach to this statement

the input assertion and input clock of the subprogram.

Definition. extended flow graph. The extended flow graph of sub

is the ordered, directed graph whose nodes are the nodes of the flow

graph of sub together with one additional node, 0, and whose edges are

the edges of the flow graph of sub together with the edge <<0 1> i>,

where i is the least positive inceger such that the ith member of seq is

an executable statement.

Definition. statement of 0. The statement of 0 is CONTINUE.

Note. Given the extended flow graph, we can now combine the

notions of the input assertion and loop assertions and input clock and

loop clocks to get, simply, the "assertions" and "clocks."

Definition. assertion, clock, and decorated nodes. Let g be the

the extended flow graph of sub. Below we define the decorated nodes of

g, the assertion for a decorated node, and the clock for some of the

decorated nodes. A node n of g is in the decorated nodes of g if and

only if one of the following is true:

(1) n is 0, in which case the assertion for n is the
partially instantiated input assertion and the clock for
n is the input clock.

(2) n is a member of the domain of lpinv, in which case the
assertion for n is the loop invariant for n and the clock
for n is the loop clock for n.

(3) The statement of n is a STOP statement, in which case the
assertion for n is (FALSE), and the clock for n is
undefined.

(4) The statement of n is a RETURN statement, in which case
the assertion for n is the partially instantiated output
assertion and the clock for n is undefined.
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X THE VERIFICATION CONDITIONS

We are finally ready to describe what one has to prove to verify a

FORTRAN subprogram. First we formally define the arbitrary constants

used to denote "states." Then we spell out the "global assumptions"

that may be used in the proof of the verification conditions (e.g., the

input assertion and the type of values taken on by the functions

denoting variables). Next we discuss the handling of FORTRAN

expressions: what may be assumed about the value of an expression (e.g.,

that the output assertion is true of the value returned by a function

subprogram) and what must be proved about an expression (e.g., that the

input assertion for a function subprogram holds). Then we turn to

FORTRAN statements: what may be assumed about the change of state

induced by the execution of a statement (e.g., that a CALL statement

changes the state as specified by its output assertion) and what must be

proved about a statement (e.g., that the input assertion for a

subroutine holds). Finally, we combine all these concepts to say what

must be proved about the paths through the program.

Convention. For the remainder of this section, let us fix upon the

T, c, sub, s, seq, labs, inpt, outpt, inpclk, lpinv, and lpclk agreed

upon in the previous section.

Definition. PATHS. Suppose g is the extended flow graph of sub.

Then PATHS is the set of Floyd paths of g for the decorated nodes of g.

Definition. state term. For each path p in PATHS and for each

edge e in p, we define the state term of e inductively, as follows. For

the first edge of p, the state term is (START) if the head of the first

edge is 0; otherwise the state term of the edge is (BEGIN). For each

noninitial edge e of p, let stp be the state term of the preceding edge.

The state term of e is the term (NEXT stp) if the head of e is anJ assignment, GO TO assignment, or CALL statement and is stp otherwise.
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Note. Thus, as previously noted, (START) is the term denoting the

state at the beginning of the execution of sub. (BEGIN) is the

arbitrarily chosen term denoting the state at the beginning of any

interior path. Every time we move past an assignment or CALL statement

(the only two statement types that cause state changes) the state is

"bumped" by applying the undefined function NEXT. Thus, on an interior

path containing two assignments and a CALL statement, the state at the

beginning is (BEGIN) and the state at the end is (NEXT (NEXT (NEXT

(BEGIN)))). The only information relating stp and (NEXT stp) is that

provided by the semantics of assignment and the output assertions of

subroutines.

We next define the set of assumptions that may be used in the

proofs of all of the verification conditions.

Definition. global assumptions. a is a member of the global

assumptions if and only if one of the following is true:

(1) a is the partially instantiated input assertion.

(2) For some local or global name n of sub and for some <t d
.. dk>, <t d 1 ... dk> is the global sort of n, t' is

the FORTRAN recognizer for t, and a has one of the forms

(IMPLIES (DEFINEDP (n STATE))

(W (n STATE))),

(IMPLIES (DEFINEDP (ELTI (n STATE) I))
(W (ELTI (n STATE) I))),

(IMPLIES (DEFINEDP (ELT2 (n STATE) I J))
(W (ELT2 (n STATE) I J))),

(IMPLIES (DEFINEDP (ELT3 (n STATE) I J K))
(W (ELT3 (n STATE) I J K)))

according to whether <t d I ... dk> is of length 1, 2, 3,
or 4.

Example. If ARRAY is a local name of sub and is declared as a two-

dimensional array of type INTEGER, then one of the global assumptions is

that if the l,Jth element of ARRAY is DEFINEDP, then it is an integer

(e.g., recognized by ZNUMBERP).
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Note. Now we spell out what may be assumed about the value of a

FORTRAN expression. For example, in proving that the input assertion

for a subroutine CALL is satisfied, we get to assume the "output

assumptions" for the arguments of the CALL.

Definition. output assumption. We now define inductively the

concept of the output assumption for an expression e with respect to a

state term stp. Throughout the definition, all output assumptions are

understood to be with respect to stp.

(I) If e is a constant, a token, or a variable or array
reference, the output assumption for e is (TRUE).

(2) If e is on array element reference, the output assumption
for e is the conjunction of the output assumption for
each member of the subscript sequence of e.

(3) If e is an arithmetic, relational, or logical expression,
or a function reference to an intrinsic function, the
output assumption for e is the conjunction of the output
assumption for each member of the argument sequence of e.

(4) If e is a function reference to a statement function f
with argument sequence <xl ... xn> then the output
assumption for e is the output assumption for the
expression that results from substituting into the body
of the definition of f the expressions x1, ... , x for

the corresponding arguments of the definition of .

(5) If e is a function reference to a function, f, other than
a statement or intrinsic function, the argument sequence
of e is <xl .. xn>, and subn is the element of c whose
name is f and whose arguments are <a I ... a >, then the

output assumption for e is the conjunction o? the output
assumptions for x1, ... , xn, conjoined with the result of
applying the following term substitution to the output
assertion of subn:

term to be replaced with

STATE stp
(a, STATE) [xI ,stp]

(a STATE) [xn, stp]

AN9 [e, stp]

Example. Suppose SUM is a function subprogram of two arguments, A

and MAX, that SUM has no global names, and that the output assertion of
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SUM is (EQUAL ANS (SIGMA I (MAX STATE) (A STATE))). Suppose that I and

J are local INTEGER names in sub and that VCT is an array in COMMON

block BLK in sub. Then the statification, with respect to (BEGIN), of

the FORTRAN expression (I+SUM(VCT, J)) is

(ZPLUS (I (BEGIN))
(SUM (BLK-VCT (BEGIN)) (J (BEGIN)))),

and the output assumption, with respect to (BEGIN), for (I+SUM(VCT, J))

is

(EQUAL (SUM (BLK-VCT (BEGIN)) (J (BEGIN)))
(SIGMA 1 (J (BEGIN)) (BLK-VCT (BEGIN)))).

In particular, the output assumption for an expression tells us what we

may assume about the values returned by the user-defined function

subprograms in the expression.

Definition. conjoined output assumptions. If <xl ... Xn> is a

sequence of expressions and stp is a state term, then the conjoined

output assumptions for <x, ... xn> with respect to stp is the formula

obtained by conjoining the output assumption (with respect to stp) for

each x. in <xl ... xn>.

Note. The next two definitions introduce the notions of the

"definedness condition" for an expression and the "input condition" for

an expression. Intuitively, the input condition for an expression must

hold when the expression is evaluated by the processor. For example,

the input condition for the reference of a function subprogram is an

instantiation of its input assertion. Built-in operations, such as "/",

also have input conditions. For example, part of the input condition

for (X/Y) is that the value of Y be non-0.

There are two subtleties to the definition of input condition: the

first is our recognition of the finite precision of arithmetic; the

second is our enforcement of the rule that certain entities must be

defined in order to be used.
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Part of the input condition for the expression (X+Y) is that the

sum of the values of X and Y be expressible on the machine. The reader

ought to ask: "Do they know that X and Y are expressible?" The answer

is yes. We require that every constant mentioned in an expression be

expressible and that every built-in operation produce expressible

results.

FORTRAN requires that certain entities be defined when they are

used in certain ways. For example, el and e 2 must both be defined in

(el+e 2 ). One's first impression is that we should require that all

expressions (except array references) produce defined results. Since

all function subprograms will be proved to return defined results, and

since the built-in functions and operations return defined results, it

is only necessary to ensure that variable and array element references

are defined. We could therefore define the "input condition" for

variable and array element references to require the definedness of the

resulting value.

However, one's first impression is often incorrect down in the

nitty gritty. We must not require that all variable references produce

defined results. The classic example is the use of such an expression

in a subroutine argument position that is smashed before it is first

referenced -- as happens when one is using the argument position to

return results from the subroutine.

Therefore, the treatment of the definedness issue in the definition

of "input condition" is not quite what one might expect. Instead of

simply making all variable references have a definedness requirement as

their input condition and letting (el+e 2 ) inherit that requirement

naturally from its subexpressions, we make the input condition for

variable references be (TRUE), and we make each composite expression

explicitly require the definedness of its immediate variable

subexpressions.

Definition. definedness condition. The definedness condition for

an expression e with respect to a state term stp is defined as follows:
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(1) If e is a variable reference or array element reference,
the definedness condition for e is (DEFINEDP fe, stp]).

(2) Otherwise, the definedness condition for e is (TRUE).

Definition. input condition. We now define inductively the

concept of the input condition for an expression e with respect to a

state term stp. Throughout the definition, all input conditions,

definedness conditions, and output assumptions are understood to be with

respect to stp.

(1) If e is a constant of type t, the input condition for e
is (TRUE) if t is LOGICAL and otherwise is

(EXPRESSIBLE.uNUMBERP e)

where u is Z, R, D, or c according as t is INTEGER, REAL,
DOUBLE, or COMPLEX.

(2) If e is a token or a variable or array reference, the
input condition for e is (TRUE).

(3) If e is an array element reference to a with subscript
expressions <x1 ... xn>, <a t d I ... d > is the member

of the array patterns of s with name a, and hyp is the
conjoined output assumptions for <x1 ... xn>, then the
input condition for e is the conjunction of the following

(a) the conjunction of the input condition
for each xi in <xl ... xn>, and

(b) the conjunction, for i from 1 to n, of

(IMPLIES hyp
(AND (ZLESSEQP I [xi, stp])

(ZLESSEQP [xi, stp] [di, stp])))

(which asserts that each array subscript is
within the appropriate bounds).

(4) If e is an arithmetic, relational, or logical expression,
or e is a function reference to an intrinsic function,
the argument sequence of e is <xl ... xn>, and hyp is
the conjoined output assumptions for <x, ... xn>, then
the input condition for e is the conjunction of the

following:

(a) the conjunction of the input condition
for each xi in <x I ... Xn>,
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(b) the conjunction of the definedness condition
for each xi in <x1 ... xn>, and

(c) the implication from hyp to the result of applying
the term substitution that replaces (I STATE) by
[XI, stp] and (J STATE) by [x2, stp] in the "input
condition formula" given in Appendix B for the function
symbol of the term [e].

(5) For all f and for all expressions xl, ..., Xn, if e has
the form

f(x l, ..., xn )

and f is the name of a statement function pattern of s,
and hyp is the conjoined output assumptions for <xl ...
x >, then the input condition for e is the conjunction0 :

(a) the conjunction of the input condition
for each x i in <x ... Xn> ,

(b) the conjunction of the definedness condition
for each xi in <xI ... Xn> , and

(c) the input condition for the expression that results
from substituting into the body of the definition of
f the expressions xl, ... , x for the
corresponding arguments of t~e definition of f.

(6) For each f, for all expressions xl, ... I xn a,..., an$

and for each subn, if e has the form

f(x 1 , ..., xn )

and f is the name of a function pattern of s, subn is the
member of c whose name is f, a,, ..., a are the
arguments of subn, and hyp is the conjoined output

assumptions for <x .. * x > , then the input condition
for e is the conjunction o? each of the following:

(a) the conjunction of the input condition
for each xi in <xI ... Xn>

(b) the conjunction of the definedness condition
for each x, in <xI ... xn>, and

(c) the implication from hyp to the result of
applying the following term substitution
to the input assertion of subn:
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term to be replaced with

STATE stp
(a, STATE) [xl, stp]

(an STATE) [xn, stp]

We are now ready to begin considering the paths through the

subprogram being verified. Consider an edge e on such a path and

imagine we have just executed the statement in the head of the edge.

How is the state produced by executing that statement related to the

state immediately preceding it? We make this clear by defining the

"assumptions" for the edge. When we find ourselves faced with proving

the input assertions, say, of the next statement (the one in the tail of

the edge), we get to assume the assumptions for the edge and all the

preceding edges on the path.

Definition. assumption. For each path p in PATHS and for each

edge e in p, we define the assumption for e as follows. For the first

edge of p the assumption is the result of replacing STATE with (BEGIN)

in the assertion for the head of e. For the other edges e of p, the

assumption is defined according to the kind of instruction of the

statement, st, of the head of e. Let stp and stn be respectively the

state term of the edge preceding e and the state term of e. All output

assumptions mentioned are with respect to stp.

(1) For each symbolic name v and for each exp, if st has the
form

v = exp

then the assumption for e is the conjunction of the
output assumption for exp, the equation

(EQUAL fv, stn] [exp, stp])

and the equations
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(EQUAL (u stn) (u stp)),

for each of the local and global names u of sub except
the long name of v.

(2) For each symbolic name v and for all expressions i and
exp, if st has the form

v(i) = exp

then the assumption for e is the conjunction of the
output assumption for i, the output assumption for exp,
the formulas

(EQUAL (ELTI [v, stn] ti, stp])
[exp, stp]),

(IMPLIES (NOT (EQUAL I ti, stp]))
(EQUAL (ELTI Cv, stn] I)

(ELTI [v, stp] I))),

and the equations

(EQUAL (u stn) (u stp)),

for each of the local and global names u of sub except
the long name of v.

(3) For each symbolic name v and for all expressions i, j,
and exp, if st has the form

v(i, J) = exp

then the assumption for e is the conjunction of the
output assumption for i, the output assumption for j, the
output assumption for exp, the formulas

(EQUAL (ELT2 [v, stn] [i, stp] [j, stp])
[exp, stp]),

(IMPLIES (NOT (AND (EQUAL I Ci, stpl)
(EQUAL J [j, stp])))

(EQUAL (ELT2 [v, stn] I J)
(ELT2 [v, stp] I J))),

and the equations

(EQUAL (u stn) (u stp)),

for each of the local and global names u of sub except

the long name of v.
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(4) For each symbolic name v and for all expressions i, j, k,
and exp, if st has the form

v(i, J, k) = exp

then the assumption for e is the conjunction of the
output assumption for 1, the output assumption for J, the
output assumption for k, the output assumption for exp,
the formulas

(EQUAL (ELT3 iv, stn] [i, stp] [j, stp] [k, stp])
[exp, stp]),

(IMPLIES (NOT (AND (EQUAL I [i, stpJ)
(EQUAL J [j, stp])
(EQUAL K [k, stpl)))

(EQUAL (ELT3 [v, stn] I J K)
(ELT3 iv, stp] I J K))),

and the equations

(EQUAL (u stn) (u stp)),

for each of the local and global names u of sub except
the long name of v.

(5) For each symbolic name v and for each k, if st has the
form

ASSIGN k TO v

then the assumption for e is the conjunction of the
equation

(EQUAL Ev, stn] k)

and the equations

(EQUAL [u, stn] [u, stp])

for each of the local and global names u of sub except v.

(6) For each symbolic name i, for each j, and for all labels
kl, ..., and kn, if e is the jth edge leading from its
head and st has the form

GO TO i, (kl, , kn)

then the assumption for e is (EQUAL [i, stp] ks).

(7) For each symbolic name i, for each j, and for all labels
kl, ..., and kn, if e is the jth edge leading from its
head and st has the form
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GO TO (kl, ... , kn) d

then the assumption for e is (EQUAL [i, stp] J).

(8) For each type t, for each u, for each expression exp, and
for all labels 11, 12, and 13, if st has the form

IF (exp) 11, 12, 13

and exp is an expression of sort <t>, and u is the letter
Z, R, or D according as t is INTEGER, REAL, or DOUBLE,
then the assumption for e is the conjunction of the
output assumption for exp and the term

(uLESSP [exp, stp] (uZERO)),

(uEQP [exp, stp] (uZERO)),

or

(uGREATERP [exp, stp] (uZERO)),

according to whether e is the first, second, or third
edge leading from its head.

(9) For each member subn of c (with name subr), and for all
expressions el, ... , and en, if st has the form:

CALL subr(e1, ... , e.)

or

CALL subr

and if the argument names of subn are al, ..., an, and
<b ... bm> is the subsequence of <a1 ... an>
containing just the members of <a an> that are
possibly smashed by subn in c, and <c1 *.. Cm> is the
corresponding subsequence of <e1 ... en>, then the
assumption for e is the conjunction of each of the
following:

(a) the conjoined output assumptions for <el ... en>
(provided st has the first form above),

(b) the result of applying the following term substitution to
the output assertion of subn:

term to be replaced with

STATE stp
NEWSTATE stn
(a1 STATE) [el, stp]
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(an STATE) ten, stp]
(b1 NEWSTATE) Cc,, stn]

(bm NEWSTATE) [Cm, stn]

and

(c) each equation eq such that for some k, eq has the
form

(EQUAL (k stn) (k stp))

and each of the following is true: i) k is a
local or global name of sub, (ii) if k is a global
name of sub, then k is not possibly smashed by subn
in c, and (iii) k is not the long name of any member of
<c I1 ... Cm>.

(10) For each expression exp and statement stm, if st has the
form

IF (exp) stm

then the assumption for e is the conjunction of the
output assumption for exp and the term (EQUAL [exp, stp]
(TRUE)) or (EQUAL [exp, stp] (FALSE)) according as e is

the first or the second edge leading from its head.

(11) If st has any other form (i.e., st is an unconditional
GO TO statement, RETURN, CONTINUE, STOP, or PAUSE
statement) the assumption for e is (TRUE).

Note. We next define what must be proved when the statement in the

tail of an edge is encountered.

Definition. verification condition. For each path p in PATHS and

for each edge e in p, we now define the verification condition for e.

Let n be the node that is the tail of e. Let st be the statement of n.

Let stp be the state term of e.

(1) If e is the last member of p, the verification condition
for e is the conjunction of (a) the result of
substituting stp for STATE in the assertion for n and (b)
(TRUE) if st is a RETURN or STOP statement, and otherwise
the lexicographic comparison of i) the result of
substituting stp for STATE in the clock for n with (ii)
the result of substituting (BEGIN) for STATE in the clock
for the first node of p.
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(2) For all expressions v and x, if st has the form

v = x

then the verification condition for e is the conjunction
of the definedness condition for x with respect to stp,
the input condition for x with respect to stp, and the
input condition for v with respect to stp.

(3) For each symbolic name v and for all labels kl, ..., and
kn, if st has the form

GO TO v, (kl, ... , kn)

then the verification condition for e is the disjunction
of the terms (EQUAL [v, stp] k.) for each j from 1 to n.

(4) For each symbolic name v and for all labels kl, ..., and
k, if st has the form

GO TO (kl, ..., kn), v

then the verification condition for e is the formula

(AND (ZLESSEQP I [v, stp])
(ZLESSEQP [v, stp] n))

(5) For each expression x, for all labels 11, 12, and 13, and
for each statement stm, if st has the form

IF (x) 1i, 12, 13

or

IF (x) stm

then the verification condition for e is the conjunction
of the definedness condition for x with respect to stp
and the input condition for x with respect to stp.

(6) For each symbolic name subr, for all expressions xl,
and Xn, and for all subn, a,, ..., an, and hyp, if subn
is the subroutine subprogram of c with name subr, al,

.. , an are the arguments of subn, hyp is the conjoined
output assumptions for <xl ... xn> with respect to stp,
and st has the form

CALL subr(xl, .. , xn)

or
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CALL subr

then the verification condition for e is the conjunction
of:

(a) the implication from hyp to the result of applying
the following term substitution to the input assertion
of subn:

term to be replaced with

STATE stp
(a1 STATE) [xl, stp]

(an STATE) [Xn, stpJ

and

(b) the conjunction of the input conditions for
each x i in <x1 ... xn>.

(7) If st is a GO TO assignment, unconditional GO TO,
CONTINUE, or PAUSE statement, the verification condition

for e is (TRUE).

Note. We now combine all the foregoing concepts to define what we

mean when we say that a syntactically correct collection of subprograms

is "semantically correct" with respect to some input/output

specifications and a FORTRAN theory. Semantically correct contexts are

constructed incrementally from the empty context by adding a single new

subprogram, specifying and annotating it, and then proving it correct by

proving each of its verification conditions, under the assumptions

governing each verification condition.

Definition. semantically correct. We define recursively the

notion that a context is semantically correct with respect to an

input/output specification <i o> and a theory. Let phi be the empty

function. Recall that we have fixed upon a T, c, sub, s, seq, labs,

inpt, outpt, inpclk, lpinv, and Ipclk.

(I) The empty context is semantically correct with respect to
<phi phi> and T.

(2) Suppose that c' is semantically correct with respect to
<inpt" outpt'> and T. Suppose further that the
restrictions of inpt and outpt to c' are, respectively,
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inpt' and outpt', and that c is obtained by adding sub to

the end of c'. Then c is semantically correct with

respect to <inpt outpt> and T if

(a) every node in the extended flow graph of sub is
reachable from 0, and

(b) for each path p in PATHS and for each edge e in
p, the verification condition for e is a
logical consequence (in the tertiary
verification extension of T for c and sub) of
the global assumptions and the assumptions for
e and for all of the edges that precede e in p.
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XI THE DO STATEMENT

We now describe how we handle the FORTRAN DO statement. Our

description is informal but complete.

We define the DO statement to be a statement of the form:

DO lab v = i, j, k

or

DO lab v = i, j

where lab is a label, v is an INTEGER variable name, and each of i, j,

and k is an INTEGER variable name, a positive INTEGER constant, or a

token. The second form of DO is an abbreviation for an instance of the

first in which k is 1. We will henceforth restrict our attention to the

first form.

We extend the definition of "possibly smashed" so that the DO

statement:

DO lab v = 4, J, k

possibly smashes the long name of v.

We permit a subprogram <s seq labs> to contain DO statements among

the executable statements provided the following additional syntactic

constraints are met.

(1) If seq contains a statement, stmtl, of the form:

DO lab v = i, j, k

then lab must be the statement label of some statement,
stmt2, after stmt1 in seq. stmt2 must be an assignment,
GO TO assignment, or CONTINUE statement, or a logical IF
containing one of the three preceding kinds of
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statements. The sequence of statements from and
including the first statement after stmt, through and
including stmt2 is called the range of stmt1 .

(2) All DOs must be "nested" in the sense that if the ranges
of two DO statements are not disjoint, then the range of
one contains the range of the other.

(3) No label used in an unconditional, computed, or assigned
GO TO, or in an arithmetic or logical IF statement, stmt,
may be attached to a statement within the range of a DO
not containing stmt.

(4) No statement within the range of a DO statement of the
form:

DO lab v = i, j, k

may possibly smash the long name of any of the variables
among v, i, j, and k.

After we have accepted a subprogram as syntactically well formed,

we translate the subprogram to an equivalent one that does not contain

DO statements. All concepts relating to the "semantic correctness" of

the original subprogram are defined in terms of the semantic correctness

of the translated program. For example, the flow graph for the original

subprogram is defined to be the flow graph for the translation of the

subprogram.

To translate a subprogram we replace each DO statement and its
range by a new sequence of statements. Let the DO statement and its

range be described schematically by:

nnn DO lab v = i, j, k
stmt1

lab stmt n

For generality, we suppose that the DO statement itself has a

statement label nnn, so that we can describe how the statement labels in

the new program are related to those in the original program. We

replace the above sequence of statements with:
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nnn IF (((i.GT.J).OR.((i.LT.I).OR.(k.LT.1)))) STOP

top CONTINUE
IF ((v.GT.J)) GO TO fin
stmt

lab stmt
v = ?+ k)
GO TO top

fin CALL UNDEFINER(v)

The two statement labels top and fin generated for a given DO

statement are different from the labels generated for any other DO

statement of the subprogram and are different from all labels in the

original subprogram. The old statement label nnn is attached to the

logical IF statement indicated above. Labels on statements stmt1

through stmtn in the original subprogram are attached to statements

stmt1 through stmtn in the translated subprogram.

The logical IF at nnn is generated in accordance with the ANSI

FORTRAN 66 requirement that the initial values of i, j, and k be such

that i is greater than j (so the DO is allowed to cycle at least once),

and all be greater than 0. We enforce the ANSI restriction by testing

its negation and executing STOP if the ANSI restriction is not met. The

path on which the ANSI restriction is assumed not to hold requires that

we prove (FALSE), the assertion for STOP. Thus, we must be able to

establish that the ANSI restriction holds at nnn.

ANSI requires that the variables among i, J, and k must be defined

upon the execution of the DO statement. In addition, the constants

among i, J, and k must be expressible integers. Both these requirements

are enforced by the normal processing of the logical expression in the

logical IF at nnn.

The CONTINUE statement labeled top is provided as a node which may

be annotated with an assertion.*
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At the statement labeled fin we CALL the subroutine (named, in this

document) UNDEFINER, giving it the DO statement's control variable, v.

UNDEFINER is built into the verification condition generator and is

known to "possibly smash" its argument and have no affect on any other

name. Both the input and output assertion for UNDEFINER are (TRUE).

Thus, in accordance with ANSI FORTRAN 66, the value of v upon the normal

completion of the DO loop is unknown. This clause in the ANSI

specification permits different compilers to implement the loop control

differently.

We do not spell out in this document the precise means we provide for

the user to annotate his program. However, we provide a mechanism by
which the user can write a loop invariant for the DO, and that invariant
is attached to the CONTINUE statement at top.
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XII USING SEMANTICALLY CORRECT CONTEXTS

We have formally defined what it means for a FORTRAN subprogram to

be semantically correct with respect to an input/output specification

and a theory. We have not related our formal notions to the real world

of FORTRAN computing. In particular, if the FORTRAN programmer has a

semantically correct context (e.g., a "library" of "correct"

subroutines), how does he use it subprograms and what do they do?

It would be necessary to formalize all of FORTRAN to answer this

question with the same level of precision and formality with which we

have defined "semantic correctness." However, we can describe vaguely

how semantically correct contexts may be used. Because of its

vagueness, the following description must be taken with a grain of salt.

To obtain a useable FORTRAN program from a context c that is

semantically correct with respect to some input and output specification

and a theory T, the following steps are performed:

(1) The theory T is extended so as to specify the values of

certain undefined functions. In particular, for each
token, token, an axiom is added equating (token) with
some expressible positive integer. In addition, axioms
are added that equate

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER) and
(GREATEST.INEXPRESSIBLE.NEGATIVE.INTEGER) with integers

satisfying the axiom INTEGER.SIZE of Appendix A.

(2) The user then checks that, in the light of the extended
theory, the input and output specifications suit his

needs. (For example, given the newly specified values of

the tokens, do the input specifications permit the

desired applications of the subprograms?)

(3) The user checks that the FORTRAN processor on which he

intends to operate executes the built-in arithmetic,

logical, and intrinsic functions in accordance with the
definitions of Appendix A and the input conditions of
Appendix B. (For example, does the processor's integer

addition mechanism really return the mathematical sum of
two integers whenever that sum is in the interval between
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(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER) and
(GREATEST.INEXPRESSIBLE.NEGATIVE.INTEGER)?)

(4) All occurrences of tokens in the subprograms of c are
replaced by their axiomatized values and the subprograms
are printed according to the standard FORTRAN rules
regarding lines and columns.

(5) The printed subprograms are then combined with unverified
subprograms and a main program. The main program must
include a COMMON declaration of each COMMON block of c.
Each such COMMON block must be declared in the main
program program precisely as it is declared in any member
of c (including type and dimension information).

(6) The user checks that the combined executable program does
not exceed the "capacity" of his processor (see section
1.2.1 of [12] and section 1.3.2 of [1]). This will
include checking that there is enough "room" to store the
arrays and subprograms. It could conceivably involve
more bizarre interpretations of "capacity" such as
restrictions on the number of formal arguments or
subroutine CALLs. What is actually required here is a
formal characterization of the "capacity" of the
processor in question.

Subprograms in the verified context may be called from unverified

programs and are guaranteed to terminate without run-time error and

produce results consistent with their input/output specifications. Of

course, such calls must satisfy the FORTRAN rules for invoking

subprograms (e.g., the types of the actuals must correspond to the types

of the formals, adjustable array dimensions must be property defined,

and so on).
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XIII AN EXAMPLE

In a 1977 Communications of the ACM article (4], we described an

algorithm for finding the first occurrence of one character string, PAT,

in another, STR. The algorithm is currently the fastest known way to

solve this problem on the average. Our algorithm has two unusual

properties. First, in verifying that PAT does not occur within the

first i characters of STR the algorithm will typically fetch and look at

fewer than i characters. Second, as PAT gets longer the algorithm

speeds up. That is, the algorithm typically spends less time to find

long patterns than short ones.

In Chapter XVIII of [5] we present a version of the algorithm

coded in a simple "toy" programming language that -- like many languages

used in program verification -- ignores many issues raised by

conventional programming languages. In this section we discuss the

verification of the same version of the algorithm, but this time coded

in our FORTRAN subset. Our subroutine finds the first occurrence of one

array of "character codes" in another array of "character codes." By

"character codes" we mean INTEGERs in the range 1 to @ASIZE, a token

understood to be the size of the alphabet (e.g., 128 for ASCII).

String searching is not FORTRAN's forte. However, we chose this

example for four reasons. First, the algorithm is of interest both

theoretically and practically and is in day-to-day use in certain text

processing systems. Second, the algorithm has been published,

illustrated, and carefully explained elsewhere. Third, the algorithm

presents certain interesting features from the point of view of

verification. Finally, it is interesting to contrast the verification

of a "toy" version with the verification of exactly the same algorithm

in a real language.
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A. The Implementation in FORTRAN

The whole idea behind the algorithm is illustrated by the following

example. Suppose we are trying to find PAT in STR and, having scanned

some initial part of STR and failed to find PAT, are now ready to ask

whether PAT occurs at the position marked by the arrow below:

PAT: EXAMPLE
STR: LET US CONSIDER A SIMPLE EXAMPLE

Instead of focusing on the left-hand end of the pattern (i.e., on

the "E" indicated by the arrow) the algorithm considers the right-hand

end of the pattern. In particular, the algorithm fetches the "I" in the

word "SIMPLE." Since "I" does not occur in PAT, the algorithm can slide

the pattern down by seven (the length of PAT) without missing a possible

match. Afterwards, it focuses on the end of the pattern again, as

marked by the arrow below.

PAT: EXAMPLE
STR: LET US CONSIDER A SIMPLE EXAMPLE

In general, as the next step would suggest, the algorithm slides

PAT down by the number of characters that separate the end of the

pattern from the last occurrence in PAT of the character, c, just

fetched from STR (or the length of PAT if c does not occur in PAT). In

the configuration above, PAT would be moved forward by five characters,

so as to align the "X" in PAT with the just fetched "X" in STR.

If the algorithm finds that the character just fetched from STR

matches the corresponding character of PAT, it moves the arrow backwards

and repeats the process until it either finds a mismatch and can slide

PAT forward, or matches all the characters of PAT.

The algorithm must be able to determine efficiently for any

character c, the distance from the last occurrence of c in PAT to the

right-hand end of PAT. But since there are only a finite number of
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characters in the alphabet we can preprocess PAT and set up a table that

answers this question in a single array access.

The reader is referred to [4) for a thorough description of an

improved version of the algorithm that can be implemented so as to

search for PAT through i characters of STR and execute less than i

machine instructions, on the average. In addition, [4) contains a

statistical analysis of the average case behavior of the algorithm and

discusses several implementation questions.

A FORTRAN version of the algorithm is exhibited below. The

subroutine FSRCH is the search algorithm itself; it takes five

arguments, PAT, STR, PATLEN, STRLEN, and X. PAT and STR are one-

dimensional adjustable arrays of length PATLEN and STRLEN respectively.

X is the dummy argument into which the answer is smashed. The answer is

either the index into STR at which the winning match is found, or else

it is STRLEN+1 indicating no match exists.

FSRCH starts by CALLing the subroutine SETUP, which preprocesses

PAT and smashes the COMMON array DELTAL. DELTAL has one entry for each

character code in the alphabet. SETUP executes in time linear in

PATLEN. It initializes DELTAl as though no character occurred in PAT

and then sweeps PAT once, from left to right, filling in the correct

value of DELTAI for each character occurrence, as though that occurrence

were the last occurrence of the character in PAT. Thus, if the same

character occurs several times in PAT (as "E" does in "EXAMPLE") then

its DELTAl entry is smashed several times and the last value is the

correct one.
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SUBROUTINE FSRCH(PAT, STR, PATLEN, STRLEN, X)
INTEGER DELTAl
INTEGER PATLEN
INTEGER STRLEN
INTEGER PAT
INTEGER STR
INTEGER I
INTEGER J
INTEGER C
INTEGER NEXTI
INTEGER X
INTEGER MAXO
DIMENSION DELTAI (@ASIZE)
DIMENSION PATCPATLEN)
DIMENSION STR( STRLEN)
COMMON /BLK/DELTAI
CALL SETUP(PAT, PATLEN)
I = PATLEN

200 CONTINUE
IF ((L.GT.STRLEN)) GO TO 500
J = PATLEN
NEXTI =(1+1)

300 CONTINUE
C =STRCI)
IF ((C.NE.PATCJ))) GO TO 400
IF ((J.EQ.1)) GO TO 600
3 (J-1)
I (I-1)
GO TO 300

400 I = MAXOCCI+DELTAI(C)), NEXT!)
GO TO 200

500 X = (STRLEN+1)
RETURN

600 X =
RETURN
END
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SUBROUTINE SETUP(A, MAX)
INTEGER DELTA1
INTEGER A
INTEGER MAX
INTEGER I
INTEGER C
DIMENSION DELTAI(@ASIZE)
DIMENSION A(MAX)
COMMON /BLK/DELTAI
DO 50 1=1, @ASIZE
DELTAI(1) = MAX

50 CONTINUE
DO 100 I=1, MAX
C = AI)
DELTAI(C) = (MAX-I)

100 CONTINUE
RETURN
END

As described in this document, our subset allows only one variable

to be declared in each INTEGER statement, requires the declaration of

implicitly typed INTEGER variables such as I and J, and requires full

parenthesization of expressions. These restrictions could be relaxed

somewhat. The statements labeled 200 and 300 in FSRCH are CONTINUE

statements to permit the attachment of loop assertions at those points.

Chapter XVIII of [5] discusses the "toy" version of the algorithm

implemented above and fully illustrates the algorithm at work. We

highly recommend that the reader see Chapter XVIII before continuing

with this discussion. In particular, that chapter contains a

description of the algorithm in which we devote a paragraph to virtually

every statement in the code for FSRCH. Furthermore, we carefully derive

the input/output assertions for the algorithm, discuss, from an

intuitive point of view, the invariants that are being maintained,

express those invariants formally, derive the verification conditions

(ignoring such things as aliasing, overflow, and array bounds

violations), and prove the verification conditions. In the following

discussion we assume the reader understands how the algorithm works.
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B. The FORTRAN Theory

To specify the input and output assertions for these two

subroutines we must extend the basic FORTRAN theory by the introduction

of the mathematical concepts of (a) a sequence being a "character

string" on a given sized alphabet, (b) the initial segments of two

strings "matching," (c) the leftmost match of PAT in STR, and d) the

distance from the last occurrence of C in PAT to the end of PAT. Below

we give the definitions of these mathematical functions.

Definition.
(STRINGP A I SIZE)

(IF (ZEROP I)
T
(AND (NUMBERP (ELTI A I))

(NOT (EQUAL (ELTI A 1) 0))
(NOT (LESSP SIZE (ELTI A I)))
(STRINGP A (SUBI I) SIZE)))

Definition.
(MATCH PAT J PATLEN STR I STRLEN)

(IF (LESSP PATLEN J)
T
(IF (LESSP STRLEN I)

F
(AND (EQUAL (ELTI PAT J) (ELTI STR I))

(MATCH PAT
(ADDI J)
PATLEN STR
(ADD1 I)
STRLEN))))

Definition.
(SEARCH PAT STR PATLEN STRLEN I)

(IF (LESSP STRLEN I)
(ADDI STRLEN)
(IF (MATCH PAT I PATLEN STR I STRLEN)

I
(SEARCH PAT STR PATLEN STRLEN

(ADDI I)))))
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Definition.

(DELTAL A C MAX)

(IF (ZEROP MAX)
0
(IF (EQUAL C (ELTI A MAX))

0
(ADD! (DELTA A C (SUB1 MAX)))))

For example, (MATCH PAT J PATLEN STR I STRLEN) determines whether

the characters of PAT in positions J through PATLEN are equal to the

corresponding characters of STR starting at position I and not exceeding

STRLEN. MATCH is recursive. That is, provided J < PATLEN and I <

STRLEN, MATCH checks that the jth character of PAT is equal to the Ith

character of STR and, if so, requires that there be a MATCH starting at

positions 1+1 and J+1. The recursive function SEARCH is the

mathematical expression of the naive string searching algorithm.

(SEARCH PAT STR PATLEN STRLEN I) asks, for each position in STR between

I and STRLEN, whether a MATCH with PAT occurs at that position.

We extend the basic FORTRAN theory by adding the definitions above.

The result is a FORTRAN theory theory appropriate for a context

containing SETUP and FSRCH.

C. The Specification of SETUP

To verify SETUP we must first specify it with input and output

assertions. These assertions must be expressed in terms of the formal

arguments to SETUP and its global names. Note that our implementation

of SETUP used the formal arguments A and MAX. In the actual CALL of

SETUP from FSRCH A will be PAT and MAX will be PATLEN. We chose

different names to make instantiations of the input and output

assertions more obvious.

The input assertion for SETUP is:
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(AND (STRINGP (A STATE) (MAX STATE) (@ASIZE))
(NOT (EQUAL (MAX STATE) 0))

(NUMBERP (MAX STATE))
(LESSP (ADDI (@ASIZE))

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER))
(LESSP (ADD1 (MAX STATE))

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER)))

The assertion requires that the elements of A from 1 to MAX be

character codes in the alphabet of size @ASIZE, and that MAX be a

positive INTEGER. In addition, it requires that both @ASIZE+l and MAX+l

be expressible.

The reader may ask "Why the +Is? Why not simply require that

@ASIZE and MAX be expressible?" An inspection of the ANSI FORTRAN 66

semantics for DO-loops reveals that

DO 100 1=1, MAX

causes I to be set to MAX+I immediately before the termination condition

is checked for the last time. Thus, unless MAX+1 is expressible, the

last increment will either cause an overflow error or cause I to be set

to garbage.

The reader may also ask "Why do you prohibit a MAX of 0? Doesn't

that just correspond to the empty string?" One's first considered

reaction might be that the condition is present because MAX is the

dimension of an array declared in SETUP. However, that aspect of MAX's

use does not show up in the verification conditions generated for SETUP;

So why is it in the input assertion for SETUP? The answer is because of

the

DO 100 I=I, MAX

statement. FORTRAN 66 requires that on entry to the DO loop the

maximum, i.e., MAX, be greater than or equal to the initial value, 1.

Should MAX ever be 0, a program with the above DO statement in it will

cause unpredictable behavior on some correct FORTRAN 66 processors.
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The output assertion for SETUP is:

(IMPLIES (AND (NUMBERP C)

(NOT (EQUAL C 0))
(NOT (LESSP (@ASIZE) C)))

(EQUAL (ELTI (BLK-DELTAI NEWSTATE) C)
(DELTAI (A STATE)

C
(MAX STATE))))

The assertion relates NEWSTATE (the state at the conclusion of the

execution of SETUP) to STATE (the state at the beginning of the

execution). Informally, it says that for every character C in the

alphabet, the Cth element of the DELTAI array in COMMON block BLK (at

the conclusion of the execution) is equal to the distance from the last

occurrence of C in A to the end of A, where that distance is defined by

the mathematical function DELTAI.

Note that, as required of an output assertion, the term above is a

term in the primary verification extension of our theory. That is, it

is well-formed and mentions no function symbols other than those in our

extension of the basic FORTRAN theory and the arguments and global names

of SETUP. Note also that it incarcerates STATE and NEWSTATE: they

appear only as arguments to the arguments and globals of SETUP.

The system has proved SETUP correct as specified above. To

describe the verification of SETUP we would have to annotate it with an

input clock, loop invariants, and loop clocks for the two DO loops.

Since we go into the verification of FSRCH in some detail, we will now

skip over the details of SETUP. Assume SETUP has been proved and that

we now have a semantically correct context that contains it.

Let us jump ahead for a moment and con~ider the following

questions. What do we have to prove when we encounter

CALL SETUP(PAT, PATLEN)

in another subprogram (e.g., FSRCH)? Suppose the state term before the

CALL is (START). Then we must prove the verification condition

generated for the CALL, which is the conjunction of:
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(a) a term substitution instance of the input assertion
for SETUP:

(AND (STRINGP (PAT (START))
(PATLEN (START))
(@ASIZE))

(NOT (EQUAL (PATLEN (START)) 0))
(NUMBERP (PATLEN (START)))
(LESSP (ADDI (@ASIZE))

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER))
(LESSP (ADDI (PATLEN (START)))

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER))), and

(b) the conjunction of the input conditions for the actual
expressions, which is (TRUE) since they are variables.

On the other side, what do we get to assume after the CALL of

SETUP? The new state term is (NEXT (START)). The assumption arising

from the CALL is the conjunction of the following:

(a) the conjoined output assumptions for the actual
expressions, which is (TRUE) in this case,

(b) a term substitution instance of the output assertion
of SETUP:

(IMPLIES (AND (NUMBERP C)
(NOT (EQUAL C 0))
(NOT (LESSP (@ASIZE) C)))

(EQUAL (ELTI (BLK-DELTAI (NEXT (START)))
C)

(DELTAl (PAT (START))
C
(PATLEN (START)))))

which tells us that the elements of DELTAI in the new
state are correctly set,

(c) the assumption that PAT and PATLEN (and all the other
local and global names of the calling subprogram not

possibly smashed by the CALL of SETUP) are unchanged
in the new state:

(EQUAL (PAT (NEXT (START)))
(PAT (START)))

(EQUAL (PATLEN (NEXT (START)))
(PATLEN (START))).
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In short, in the state after the CALL, DELTAI is correctly set and no

other names have been affected.

D. The Specification of FSRCH

Assuming we have a semantically correct context containing SETUP we

now proceed to specify FSRCH. The input assertion for FSRCH is:

(AND (LESSP (ADDI (@ASIZE))
(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER))

(STRINGP (PAT STATE) (PATLEN STATE) (@ASIZE))
(NUMBERP (PATLEN STATE))
(LESSP 0 (PATLEN STATE))
(STRINGP (STR STATE) (STRLEN STATE) (@ASIZE))
(NUMBERP (STRLEN STATE))
(LESSP 0 (STRLEN STATE))

(LESSP (PLUS (PATLEN STATE) (STRLEN STATE))
(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER)))

Informally, the assertion puts the same restrictions on @ASIZE and

PAT as required by our use of SETUP. In addition, it requires that STR

be a nonempty character string on the alphabet of size @ASIZE. The most

interesting requirement however is the last: the sum of PATLEN and

STRLEN must be expressible.

At first sight one might think that FSRCH will work for any sized

PAT and STR as long as every character in them can be indexed. Were

that true, it would be enough to require that both PATLEN and STRLEN be

expressible. But suppose that PAT has been pushed down STR so that the

last character of PAT is aligned with the last character of STR. That

is, I is set to STRLEN. Suppose that the last character, C, of STR does

not occur in PAT. Then we increment I by the contents of the DELTAI

array at C. That value will be PATLEN, since C does not occur in PAT.

Thus, I becomes STRLEN+PATLEN. FSRCH then jumps to 200, discovers that

I exceeds STRLEN, and quits. But if STRLEN+PATLEN were not expressible,

the step in which we increment I the last time would either cause an

overflow error or return garbage.
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The output assertion for FSRCH is:

(EQUAL (X NEWSTATE)
(SEARCH (PAT STATE)

(STR STATE)
(PATLEN STATE)
(STRLEN STATE)
1))

Informally, the assertion says that at the conclusion of FSRCH, X

is set to the correct value, as defined by applying the mathematical

function SEARCH to the initial values of the arguments.

E. The Annotation of FSRCH

To prove FSRCH correct we must annotate it. We first specify the

input clock. Recall that a clock is an n-tuple of natural numbers. The

"time" remaining on a clock when it is encountered is supposed to be

lexicographically smaller than the "time" remaining on the previously

encountered clock. The input clock is attached to the entry and thus

puts a limit on the total amount of "time" the program can run,

expressed as a function of the initial environment.

By inspecting FSRCH we see that every time we go around the loop

through statement label 200, I is bigger than it was before -- though

this observation requires some understanding of NEXTI and MAXO. I

cannot get bigger than STRLEN+PATLEN. So the program can cycle through

statement 200 only a finite number of times. However, there is an inner

loop, through statement 300. Every time the program cycles through it,

J gets smaller and is bounded below by 0. Thus, we have a lexicographic

argument that the program terminates. The argument uses clocks with two

components. Intuitively, the first component must tick down at least

once every time we go through the outer loop. We do not care what the

second component does when the first component ticks down. The second

component must tick down every time we go through the inner loop -- and

when that happens the first component must not increase! Here is the

input clock for FSRCH.
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(LIST (PLUS 1
(STRLEN (START))
(PATLEN (START)))

0)

By making the first component large enough in the input clock we do

not have to worry about the initial value of the second component.

We now specify the loop invariants and loop clocks for FSRCH. It

is at this point that the reader benefits the most from the presentation

in Chapter XVIII of (5] because there we explain the role of many of

the conjuncts in the two loop invariants. Here is the loop invariant

that we attach to the CONTINUE statement at line 200 in FSRCH:

(AND (EQUAL (PAT STATE) (PAT (START)))
(EQUAL (STR STATE) (STR (START)))
(EQUAL (PATLEN STATE)

(PATLEN (START)))
(EQUAL (STRLEN STATE)

(STRLEN (START)))
(NUMBERP (I STATE))
(NOT (LESSP (I STATE) (PATLEN (START))))
(LESSP (I STATE)

(PLUS (PATLEN (START))
(SEARCH (PAT (START))

(STR (START))
(PATLEN (START))

(STRLEN (START))

M)

(IMPLIES (AND (NUMBERP C)
(NOT (EQUAL C 0))

(NOT (LESSP (@ASIZE) C)))
(EQUAL (ELTI (BLK-DELTAI STATE) C)

(DELTA1 (PAT (START))

C
(PATLEN (START))))))

The first seven conjuncts are described in [5] (modulo the

translation from indices that start at 0 to indices that start at 1).

Intuitively, they say that PAT, STR, PATLEN, and STRLEN are not being

modified (i.e., they are the same objects in the current state, STATE,

as in the initial state, (START)), that there are at least PATLEN
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characters to the left of I (so we may compare then pairwise), and that

we have not yet passed the right-hand end of the winning match of PAT in

STR. The final conjunct says that the DELTAI array is not being

modified. In particular, it says that its configuration in the current

state STATE has the same property that it did immediately after we

called SETUP.

Here is the loop clock attached to statement 200:

(LIST (DIFFERENCE (PLUS I

(STRLEN (START))
(PATLEN (START)))

(I STATE))
(ADDI (PATLEN (START))))

Since I is never 0, the first component of this clock is less than

that of the input clock. We will have to prove that this clock is

bigger than any clock we encounter on a nonexit path leading out of

statement 200 (which we can do because the only such path leads to the

inner loop where we will hold the first component fixed and count the

second down). We will also have to prove that this clock is smaller

than any clock we see at the beginning of a path coming into statement

200 (which we can do since, except for the input path, the only such

path will come from the inner loop where I will have been increased with

the MA 0 expression,.

The loop invariant to be attached to the CONTItUE statement at

statement 300 in FSRCH is:
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(AND (EQUAL (PAT STATE) (PAT (START)))
(EQUAL (STR STATE) (STR (START)))

(EQUAL (PATLEN STATE)
(PATLEN (START)))

(EQUAL (STRLEN STATE)

(STRLEN (START)))
(NOT (LESSP (NEXTI STATE)

(ADDI (PATLEN (START)))))
(LESSP (NEXTI STATE)

(ADDI (PLUS (PATLEN (START))
(SEARCH (PAT (START))

(STR (START))
(PATLEN (START))
(STRLEN (START))
1))))

(IMPLIES (AND (NUMBERP C)
(NOT (EQUAL C 0))
(NOT (LESSP (@ASIZE) C)))

(EQUAL (ELTI (BLK-DELTAI STATE) C)
(DELTAI (PAT (START))

C
(PATLEN (START)))))

(NUMBERP (I STATE))
(NOT (EQUAL (I STATE) 0))
(NUMBERP (J STATE))
(NOT (EQUAL (J STATE) 0))
(NUMBERP (NEXTI STATE))
(NOT (LESSP (PATLEN (START)) (0 STATE)))
(NOT (LESSP (STRLEN (START)) (I STATE)))
(EQUAL (NEXTI STATE)

(PLUS (ADD1 (PATLEN (START)))
(DIFFERENCE (I STATE) (0 STATE))))

(NOT (LESSP (ADDI (STRLEN (START)))
(NEXTI STATE)))

(NOT (LESSP (I STATE) (0 STATE)))
(MATCH (PAT (START))

(ADDI (J STATE))
(PATLEN (START))
(STR (START))
(ADDI (I STATE))
(STRLEN (START)))

(NUMBERP (ELTI (BLK-DELTA1 STATE)
(ELTI (STR (START)) (I STATE))))

(NUMBERP (ELTI (STR (START)) (I STATE)))
(NUMBERP (ELTI (PAT (START)) (0 STATE))))

The first seven conjuncts are really just a version of the
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invariant at 200, which we must maintain because we will have to prove

it when we exit the inner loop and jump to 200. The next eleven

conjuncts specify the invariant inherently maintained by the inner loop.

This invariant is discussed in [5]. Intuitively, it requires that J

and I be "corresponding" legal indices into PAT and STR and that we have

established that the terminal substrings of PAT and STR starting at J+l

and 1+1 MATCH. The last three conjuncts are unnecessary but make the

verification a little easier. They inform us that the elements of

DELTAI, STR, and PAT that we will access in any single iteration through

the inner loop are nonnegative INTEGERs. These facts can be derived.

However, by making them explicit we permit the theorem-prover to

simplify certain arithmetic expressions more rapidly because it can

immediately rule out the possibilities that negative quantities are

involved.

The loop clock at statement 300 is:

(LIST (DIFFERENCE (PLUS I

(STRLEN (START))
(PATLEN (START)))

(SUBI (NEXTI STATE)))
(0 STATE))

When we come into the inner loop from the outer, this clock is less

than the clock at 200 because the first component is equal and the

second component is smaller. Every time we go around the inner loop

this clock will be less than it was the previous time because the first

component will not have changed and the second will have been

decremented by 1. When we go from the inner loop back out to the outer

one, the clock at 200 will be smaller because I will be larger than

(SUBI (NEXTI STATE)).
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F. The Verification of One Path Through FSRCH

The global assumption for the verification of FSRCH is the

conjunction of (1) the partially instantiated input assertion for FSRCH:

(AND (LESSP (ADDI (@ASIZE))
(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER))

(STRINGP (PAT (START))
(PATLEN (START))
(@ASIZE))

(NUMBERP (PATLEN (START)))
(LESSP 0 (PATLEN (START)))
(STRINGP (STR (START))

(STRLEN (START))
(@ASIZE))

(NUMBERP (STRLEN (START)))
(LESSP 0 (STRLEN (START)))
(LESSP (PLUS (PATLEN (START))

(STRLEN (START)))
(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER))

(DEFINEDP (STRLEN (START)))
(DEFINEDP (PATLEN (START))))

and (2) the axiom defining the types of the variables in FSRCH,

when they are defined:
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(AND (IMPLIES (DEFINEDP (PATLEN STATE))

(ZNUMBERP (PATLEN STATE)))

(IMPLIES (DEFINEDP (J STATE))

(ZNUMBERP (J STATE)))

(IMPLIES (DEFINEDP (NEXTI STATE))

(ZNUMBERP (NEXTI STATE)))

(IMPLIES (DEFINEDP (C STATE))

(ZNUMBERP (C STATE)))
(IMPLIES (DEFINEDP (STRLEN STATE))

(ZNUMBERP (STRLEN STATE)))

(IMPLIES (DEFINEDP (X STATE))

(ZNUMBERP (X STATE)))

(IMPLIES (DEFINEDP (I STATE))

(ZNUMBERP (I STATE)))

(IMPLIES (DEFINEDP (ELTI (PAT STATE)
I))

(ZNUMBERP (ELTI (PAT STATE)

I)))
(IMPLIES (DEFINEDP (ELTI (STR STATE)

I))
(ZNUMBERP (ELTI (STR STATE)

I)))
(IMPLIES (DEFINEDP (ELTI (BLK-DELTAl STATE)

I))
(ZNUMBERP

(ELTI (BLK-DELTAI STATE)

I)))).

We now consider the verification conditions along the path from the

input to statement 200. The path contains the artificially added node

0, the call of SETUP, the initialization of I to PATLEN, and the

annotated CONTINUE statement labeled 200.

The initial state term is (START). Consider the first edge, which

terminates at the CALL statement:

CALL SETUP(PAT, PATLEN)

We have already exhibited the verification condition for this CALL

statement. In particular, we have to prove that the instantiated input

assertion for SETUP is satisfied. We get to assume the global

assumptions above. The proof is trivial.
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The state term after the CALL is (NEXT (START)). We also get to

assume the previously discussed assumptions resulting from the CALL of

SETUP. Those assumptions relate variables in the (START) state to those

in (NEXT (START)). Let us continue down the input path to:

I = PATLEN

The verification condition for the edge leading to this statement is the

conjunction of the input condition for I (which is (TRUE)), the input

condition for PATLEN (which is (TRUE)), and the definedness condition

for PATLEN in the current state (NEXT (START)). That is, we have to

prove:

(DEFINEDP (PATLEN (NEXT (START))))

assuming the global assumptions and the assumptions resulting from the

CALL of SETUP. Those latter assumptions, recall, tell us that (PATLEN

(NEXT (START))) is equal to (PATLEN (START)). But the global assumption

tells us (DEFINEDP (PATLEN (START))). Thus, this verification condition

is trivial also.

As a result of the assignment statement above, the new state term

is (NEXT (NEXT (START))). The assumption for the edge coming out of the

assignment tells us that (I (NEXT (NEXT (START)))) is (PATLEN (NEXT

(START))), and that, except for I, the value of every variable in (NEXT

(NEXT (START))) is equal to its value in (NEXT (START)).

We finally arrive at the CONTINUE statement at label 200 -- the

last node in the path. The verification condition for this statement is

the conjunction of (1) the instance of the loop assertion at 200

obtained by replacing STATE by the current state term:

107



(AND (EQUAL (PAT (NEXT (NEXT (START)))) (PAT (START)))

(EQUAL (STR (NEXT (NEXT (START)))) (STR (START)))

(EQUAL (PATLEN (NEXT (NEXT (START))))

(PATLEN (START)))
(EQUAL (STRLEN (NEXT (NEXT (START))))

(STRLEN (START)))
(NUMBERP (I (NEXT (NEXT (START)))))

(NOT (LESSP (I (NEXT (NEXT (START)))) (PATLEN (START))))

(LESSP (I (NEXT (NEXT (START))))

(PLUS (PATLEN (START))
(SEARCH (PAT (START))

(STR (START))

(PATLEN (START))

(STRLEN (START))
)))

(IMPLIES (AND (NUM 'P C)

(NOT UEQUAL C 0))

(NOT (LESSP (@ASIZE) C)))
(EQUAL (ELTl (BLK-DELTAI (NEXT (NEXT (START)))) C)

(DELTAI (PAT (START))

C
(PATLEN (START))))))

and (2) the lexicographic comparison of the loop clock at 200

(instantiated with the current state term) and the input clock:

(LEX (LIST (DIFFERENCE (PLUS I

(STRLEN (START))

(PATLEN (START)))

(I (NEXT (NEXT (START)))))
(ADDI (PATLEN (START))))

(LIST (PLUS 1

(STRLEN (START))

(PATLEN (START)))

0))

To prove this we get to use the global assumptions, and the

assumptions provided by the previously encountered CALL and assignment

statements. In particular, the latter assumptions permit the theorem-

prover to reduce terms such as (PAT (NEXT (NEXT (START)))) to (PAT

(START)), about which we have assumptions provided by the input

assertion.
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G. A Comparison With the Toy Version

Our mechanical theorem-prover has proved the verification

conditions for SETUP and FSRCH. We will not discuss the other paths

through FSRCH. The discussion of the toy version of the algorithm in

(5] sketches the proofs that the assertion at the beginning of each

path implies the assertion at the end. However, as we have noted,

addressing the limitations of a real programming language requires that

one consider more than the simple paths from one assertion to the next.

Let us consider the statement labeled 400:

400 I = MAXO((I+DELTAI(C)), NEXTI)

In our toy version of the problem, the verification condition generator

walks through this statement and records the fcct that I is the maximum

of the present mathematical values of I+DELTAI(C) and NEXTI. The

statement requires nothing new for us to prove.

But in a real language, the statement at 400 is a mine field of

possible errors. In FORTRAN terms, we have to prove six things to get

past this assignment statement:

(1) C is defined.

(2) C is a legal index into DELTAI, i.e., I < C < @ASIZE.

(3). DELTAl(C) is defined.

(4) I is defined.

(5) I+DELTAI(C) is expressible.

(6) NEXTI is defined.

We will sketch the proofs of these six facts. First, in the state

in which we encounter this statement, C is STR(J). Since J is a legal

index into STR and since the input assertion tells us that for all such

J, STR(J) is a character code between I and @ASIZE, we can conclude that

C is defined. We can also conclude that C is a legal index into DELTAI

since @ASIZE is also the size of the DELTAI array. (Note that the

argument that we can use C as an index into DELTAI is beyond the scope

of a standard compiler or type checker.) We can prove that DELTAI(C) is
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defined using the invariant about the effect of SETUP on BLK-DELTAI. In

particular, DELTAI(C) is equal to the value of the mathematical function

DELTAI applied to certain arguments, and it is easy to show that the

function in question always returns a number. We can prove that I and

NEXTI are defined from the inner loop invariant. The only remaining

problem is to prove that I+DELTAI(C) does not cause an overflow. Here

is the proof. The inner invariant tells us that I is positive and less

than or equal to STRLEN (ostensibly so that we can use it as an index

into STR). As noted above, DELTAI(C) is equal to the value of the

mathematical function DELTAI applied to certain arguments. It is easy

to prove by mathematical induction on the size of PAT that the value of

the DELTAI function is nonnegative and less than or equal to PATLEN.

Therefore, I+DELTAI(C) is bounded below by I and above by STRLEN+PATLEN,

which is expressible, by the input assertion.

Thus, we have proved the verification condition required to move

past the statement labeled 400. It is encouraging to note that the

proof is not deep. Instead, it is merely tedious. But the tedium --

and the responsibility for the logical correctness of the proof -- is

the burden of our mechanical theorem-prover, not the user. When the

theorem-prover has proved all of the verification conditions generated

for SETUP and FSRCH we have gained something real: when executed by any

correct FORTRAN processor in an environment that satisfies our input

assertion, FSRCH will always terminate, will never cause a run-time

error, and computes the correct answer.
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Appendix A

THE BASIC FORTRAN THEORY

We construct the basic FORTRAN theory in two stages. First we

build the so-called "integer fragment" containing the formal

correspondents of the FORTRAN INTEGER and LOGICAL operations, relations,

and functions. Then we extend the integer fragment by adding the

function symbols required for the REAL, DOUBLE, and COMPLEX types.

We completely specify the integer fragment of the basic FORTRAN

theory. We only sketch how to extend the integer fragment to produce

the basic FORTRAN theory. We have not yet formalized in our theory the

mathematics behind type REAL (and thus also behind types DOUBLE and

COMPLEX). However, it is necessary to introduce certain function

symbols and assumptions used by the verification condition generator in

the handling of REAL, DOUBLE, and COMPLEX expressions.

Definition. integer fragment. The integer fragment is produced by

extending the theory in [5] and [6] by adding the following functions,

shells, and axioms.

Note. First, we add the function LOGICALP, which recognizes

objects of type LOGICAL. The logical operations corresponding to

FORTRAN's .AND., .OR., and .NOT. are the functions AND, OR, and NOT,

which are already in the primitive theory described in [5] and [6].

Definition.
(LOGICALP X)

(OR (EQUAL X (TRUE))
(EQUAL X (FALSE)))

Note. Next we begin the construction of the mathematical functions

that correspond to FORTRAN's built-in operations on type INTEGER.
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The primitive theory upon which we construct the basic FORTRAN

theory already includes the (Peano-like) shell axioms for the natural

numbers (recognized by NUMBERP) and the shell axioms for the negatives.

The negative number -n is constructed by applying the "constructor"

function MINUS to the Peano number n. The negatives are recognized by

the function NEGATIVEP. Given a negative representing -n, the function

NEGATIVE.GUTS returns the Peano number n. The primitive theory also

includes the Peano sum and less than functions, PLUS and LESSP. We

begin by defining the remaining elementary functions on natural numbers.

Definition.
(DIFFERENCE X Y)

(IF (ZEROP X)
0
(IF (ZEROP Y)

X

(DIFFERENCE (SUB1 X) (SUBI Y))))

Definition.
(TIMES X Y)

(IF (ZEROP X)

0
(PLUS Y (TIMES (SUB1 X) Y)))

Definition.
(QUOTIENT X Y)

(IF (ZEROP Y)
0
(IF (LESSP X Y)

0
(ADDI (QUOTIENT (DIFFERENCE X Y) Y))))

Definition.
(EXPT I J)

(IF (ZEROP J)
1
(TIMES I (EXPT I (SUBI J))))

Note. Now, using the negatives and the Peano numbers, we "define"

the set of positive and negative integers (often called "Z") by defining
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the Boolean function ZNUMBERP to return T or F according to whether its

argument is an integer. We then define the standard functions on the

integers. These equations define the usual infinite sets of ordered

pairs embodying the traditional mathematical notions of integer sum,

product, etc. For example, our definition of integer sum specifies the

value of the sum of arbitrarily large integers. Because of the

finiteness of actual processors, these mathematical notions, by

themselves, do not accurately describe the semantics of the

corresponding FORTRAN integer operations, and we do not so use them.

Instead, we use these mathematical notions in the input/output

specifications of those finite FORTRAN operators.

Definition.
(ZNUMBERP X)

(OR (NEGATIVEP X) (NUMBERP X))

Definition.
(ZZERO)

(ZERO)

Definition.
(ZPLUS X Y)

(IF
(NEGATIVEP X)
(IF

(NEGATIVEP Y)
(MINUS (PLUS (NEGATIVE.GUTS X)

(NEGATIVE.GUTS Y)))
(IF (LESSP Y (NEGATIVE.GUTS X))

(MINUS (DIFFERENCE (NEGATIVE.GUTS X) Y))
(DIFFERENCE Y (NEGATIVE.GUTS X))))

(IF
(NEGATIVEP Y)
(IF (LESSP X (NEGATIVE.GUTS Y))

(MINUS (DIFFERENCE (NEGATIVE.GUTS Y) X))
(DIFFERENCE X (NEGATIVE.GUTS Y)))

(PLUS X Y)))
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Definition.
(ZDIFFERENCE X Y)

(IF
(NEGATIVEP X)
(IF (NEGATIVEP Y)

(IF (LESSP (NEGATIVE.GUTS Y)
(NEGATIVE.GUTS X))

(MINUS (DIFFERENCE (NEGATIVE-GUTS X)
(NEGATIVE.GUTS Y)))

(DIFFERENCE (NEGATIVE.GUTS Y)
(NEGATIVE.GUTS X)))

(MINUS (PLUS (NEGATIVE.GUTS X) Y)))
(IF (NEGATIVEP Y)

(PLUS X (NEGATIVE.GUTS Y))
(IF (LESSP X Y)

(MINUS (DIFFERENCE Y X))
(DIFFERENCE X Y))))

Definition.
(ZTIMES X Y)

(IF (NEGATIVEP X)
(IF (NEGATIVEP Y)

(TIMES (NECATIVE.GUTS X)
(NEGATIVE.GUTS Y))

(MINUS (TIMES (NEGATIVE.GUTS X) Y)))
(IF (NEGATIVEP Y)

(MINUS (TIMES X (NEGATIVE.GUTS Y)))
(TIMES X Y)))

Definition.

(ZQUOTIENT X Y)

(IF (NEGATIVEP X)
(IF (NEGATIVEP Y)

(QUOTIENT (NEGATIVE.GUTS X)
(NEGATIVE.GUTS Y))

(MINUS (QUOTIENT (NEGATIVE.GUTS X) Y)))

(IF (NEGATIVEP Y)
(MINUS (QUOTIENT X (NEGATIVE.GUTS Y1)))
(QUOTIENT X Y)))

Definition.
(ZEXPTZ I J)

(IF (ZEROP J)

(ZTIMES I (ZEXPTZ I (SUBI 3).'))
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Note. (ZEXPTZ I J) returns I raised to the Jth power, provided I

is a positive or negative integer and J is a nonnegative integer. In

particular, the definition of ZEXPTZ does not handle the case that J is

negative -- which involves real (or at least rational) arithmetic. (In

fact, since the Peano function ZEROP returns T on all objects other than

those constructed by the Peano ADDI function, (ZEXPTZ I J) is defined to

be I for negative J.) This is an acceptable definition for ZEXPTZ,

which is used in the formalization of INTEGER to INTEGER exponentiation,

because the input condition for (I**J), where I and J are of type

INTEGER, requires that J be nonnegative.

We next introduce the usual collection of relations on the integers

(e.g., "less than," etc.). There is a mild problem caused by our use of

the shell principle to introduce the negatives: (MINUS 0) is an object

different from 0. Consequently, we cannot use the usual equality

predicate as the "meaning" of the FORTRAN relation .EQ. on INTEGERs.

Instead, we must define an equality relation on the ZNUMBERPs, called

ZEQP, under which (MINUS 0) and 0 are equal. We therefore define

(ZNORMALIZE X) to return 0 if X is (MINUS 0) and X if X is any other

ZNUMBERP. Our definition of ZEQP ZNORMALIZEs both arguments and then

checks equality.

Definition.
(ZNORMALIZE X)

(IF (NEGATIVEP X)
(IF (EQUAL (NEGATIVE.GUTS X) 0) 0 X)
(FIX x))

Definition.

(ZEQP X Y)

(EQUAL (ZNORMALIZE X) (ZNORMALIZE Y))

Definition.
(ZNEQP X Y)

(NOT (ZEQP X Y))
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Definition.
(ZLESSP X Y)

(IF (NEGATIVEP X)
(IF (NEGATIVEP Y)

(LESSP (NEGATIVE.GUTS Y)
(NEGATIVE.GUTS X))

(NOT (AND (EQUAL (NEGATIVE.GUTS X) 0)
(ZEROP Y))))

(IF (NEGATIVEP Y) F (LESSP X Y)))

Definition.
(ZLESSEQP X Y)

(NOT (ZLESSP Y X))

Definition.
(ZGREATERP X Y)

(ZLESSP Y X)

Definition.
(ZGREATEREQP X Y)

(NOT (ZLESSP X Y))

Note. We now introduce two undefined constants that denote the

upper and lower bounds of the machine's integer arithmetic. These

bounds are used in the definition of the function EXPRESSIBLE.ZNUMBERP.

Our verification condition generator produces formulas that guarantee

that the INTEGER constants mentioned in the program text (except in

DIMENSION statements) are EXPRESSIBLE.ZNUMBERPs. EXPRESSIBLE.ZNUMBERP

is also used in the input condition formulas for the built-in FORTRAN

INTEGER operations. For example, the value produced by the FORTRAN

expression (X+Y) is a certain sum, as defined by ZPLUS, provided that

sum is an EXPRESSIBLE.ZNUMBERP. (Since we guarantee that all constants

are expressible and that all built-in operations produce expressible

answers, we do not have to consider the possibility that the arguments

to a function are inexpressible because there is no way to construct

such an integer.)
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To reduce the number of trivial verification conditions, such as

(EXPRESSIBLE.ZNUMBERP 4), we have added an axiom to the basic FORTRAN

theory that is nowhere justified by the definition of FORTRAN, but which

is quite reasonable: we assume that the integers between -200 and 200

are all expressible. We know of no FORTRAN processors for which this is

false.

Since nothing else is assumed about the range of expressible

integers, the reader may wonder how the expressibility conditions are

proved (when the value in question is not between -200 and 200). The

answer is that they are proved from the input assertions the user

supplies on the subprograms being verified. The specifier must state

explicitly the size constraints under which his program operates. For

example, consider a straightforward "big number" multiplication

subroutine for arrays representing digit sequences in an arbitrary base,

B. The subroutine must be able to multiply two digits together and

obtain their product, to which it must be able to add a "carry" that is

less than the base. Thus, the subroutine does not work correctly if one

tries to use a base B for which ((B-I)*B) is inexpressible.

Undefined Function.
(GREATEST.INEXPRESSIBLE.NEGATIVE.INTEGER)

Undefined Function.
(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER)

Axiom. INTEGER.SIZE:
(AND
(ZLESSP (GREATEST.INEXPRESSIBLE.NEGATIVE.INTEGER)

-200)
(ZLESSP 200

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER)))

Note. The above axiom is consistent, since there are no other

axioms about these two constants and -201 and 201 are constants in the

theory satisfying the two conjuncts.
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Definition.
(EXPRESSIBLE.ZNUMBERP X)

(AND
(ZLESSP (GREATEST.INEXPRESSIBLE.NEGATIVE.INTEGER)

X)
(ZLESSP X

(LEAST.INEXPRESSIBLE.POSITIVE.INTEGER)))

Note. For each of the finite number of tokens we introduce a

constant function of the same name. Each function is required to have

an expressible positive integer value. (In particular, 0 must be LESSP

the value, from which it can be proved that the value is a positive

integer.)

For each token, token:

Undefined Function.
(token)

Axiom. token.POSITIVE
(AND (LESSP 0 (token))

(EXPRESSIBLE.ZNUMBERP (token)))

Note. We now define the mathematical functions computed by the

FORTRAN intrinsic functions over type INTEGER.

Definition.
(lABS I)

(IF (NErATIVEP 1)
(NEGATIVE.GUTS I)
(FIX I))

Definition.
(MOD X Y)

(ZDIFFERENCE X
(ZTIMES Y (ZQUOTIENT X Y)))

Definition.
(MAXO I J)

(IF (ZLESSP I J) J I)
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Definition.
(MINO I J)

(IF (ZLESSP I J) I J)

Definition.
(ISIGN I J)

(IF (NEGATIVEP J)
(ZTIMES -I (TABS I))
(TABS I))

Definition.
(IDIM I J)

(ZDIFFEREN'E I (MINO IJ))

Note. We now define DEFINEDP, which is the negation of UNDEFINED,

which is the recognizer of a new shell class containing an infinite set

of objects. DEFINEDP is used in the enforcement of the FORTRAN

requirement that variables be defined before they are used in the

primitive arithmetic operations. We introduce it via a shell recognizer

rather than as an undefined function so the knowledge that an object

satisfies ZNUMBERP (for example) establishes that it is DEFINEDP.

Shell Definition.
Add the shell UNDEF of one argument with
recognizer UNDEFINED,
accessor UNDEF.GUTS,
and default value 0.

Definition.
(DEFINEDP X)

(NOT (UNDEFINED X))

Note. We introduce four undefined functions: the constant function

START, used to denote the arbitrary state at the beginning of the

initial paths through a subprogram being verified, and the three

functions ELTI, ELT2, and ELT3, used in the denotation of the elements

of one-, two-, and three-dimensional arrays.
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Undefined Function.
(START)

Undefined Function.
(ELTI A I)

Undefined Function.
(ELT2 A I J)

Undefined Function.
(ELT3 A I J K)

Note. We now define the function LEX. Suppose LI is the list

containing the k+l natural numbers <no ... nk> and L2 is the list

containing the k+l natural numbers <m0 ... mk>. Then (LEX Li L2) is

(TRUE) if and only if the ordinal wk*n0 + wk-l*nl + ... + w0 *nk is less

than the ordinal wk*m0 + wk-l*ml + ... + w0 *mk. That is, for each

natural number k, LEX is the well-founded relation on k+l-tuples of

natural numbers induced by the less than relation on wk+l.

Definition.
(LEX LI L2)

(IF (OR (NLISTP El) (NLISTP L2))
F
(OR (LESSP (CAR LI) (CAR L2))

(AND (EQUAL (CAR Li) (CAR L2))

(LEX (CDR LI) (CDR L2)))))

This completes the specification of the integer fragment of the

basic FORTRAN theory.

To construct the basic FORTRAN theory, we extend the integer

fragment of the basic FORTRAN theory. The first step is to add

notational conventions suitable for admitting noninteger FORTRAN

arithmetic constants (e.g., 1.23E45 and (-1.2, 3.4)) as terms. We do

not specify those conventions in this document. The second step is the

addition of the following functions and axioms concerning the

mathematical counterparts of types REAL, DOUBLE, and COMPLEX.

We introduce the monadic Boolean functions RNUMBERP, DNUMBERP, and

CNUMBERP to recognize the objects of type REAL, DOUBLE, and COMPLEX,

respectively. Thus, (RNUMBERP O.OE-999) is a theorem.
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We introduce the constant functions (RZERO), (DZERO), and (CZERO)

to be the zero elements of type REAL, DOUBLE, and COMPLEX, respectively.

We introduce the monadic Boolean functions EXPRESSIBLE.RNUMBERP,

EXPRESSIBLE.DNUMBERP, and EXPRESSIBLE.CNUMBERP to play the roles for

types REAL, DOUBLE, and COMPLEX (respectively) that EXPRESSIBLE.ZNUMBERP

plays for type INTEGER. For example, if a program mentions the REAL

0.2E-999, then one of the verification conditions will include the

proposition:

(EXPRESSIBLE.RNUMBERP 0.2E-999).

Thus, whoever specifies the operations on the REALs need not include (in

the input condition formulas for those operations) the requirement that

each REAL input is expressible provided he guarantees that no such

operation can generate an inexpressible REAL result.

We introduce the dyadic function symbols RPLUS, RTIMES,

RDIFFERENCE, RQUOTIENT, RLESSP, RLESSEQP, REQP, RNEQP, RGREATEREQP, and

RGREATERP.

We introduce the dyadic function symbols DPLUS, DTIMES,

DDIFFERENCE, DQUOTIENT, DLESSP, DLESSEQP, DEQP, DNEQP, DGREATEREQP, and

DGREATERP.

We introduce the dyadic function symbols CPLUS, CTIMES,

CDIFFERENCE, CQUOTIENT, CEQP, and CNEQP.

We introduce the dyadic function symbols REXPTZ, DEXPTZ, CEXPTZ,

REXPTR, REXPTD, DEXPTR and DEXPTD. (ZEXPTZ, the INTEGER to INTEGER

exponentiation function was handled in the integer fragment.)

For each intrinsic function pattern with name fn and n arguments

(except those intrinsic functions already introduced in the integer

fragment, lABS, MOD, MAXO, MINO, ISIGN, and IDIM), we introduce the n-

ary function symbol fn, eventually to be defined to represent the

mathematical function specified in the FORTRAN definition for the

intrinsic function named fn.
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Note. We do not specify in this document what the properties of

the REAL, DOUBLE, or COMPLEX operations are. Intuitively, if the REAL

variables X and Y have the values x and y at run time, then the value of

the FORTRAN expression (X+Y) is understood to be (RPLUS x y), provided x

and y satisfy the input conditions specified for RPLUS.
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Appendix B

INPUT CONDITION FORMULAS

The table below gives the "input condition formula" for each built-

in INTEGER operation, relation, and intrinsic function. The formula is

used in the definition of the "input condition" for an expression.

Eventually such formulas must be supplied for all the REAL, DOUBLE, and

COMPLEX routines as well. At the moment, the formula for these routines

is (FALSE), which means that a program involving REAL, DOUBLE PRECISION,

or COMPLEX arithmetic cannot be proved correct by our system st- e the

input conditions could never be established.

Rather than give the input condition formula for the FORTRAN symbol

that appears in an expression e, e.g., + or .LE., we give the formula

for the function symbol of the term [e], e.g., ZPLUS or ZLESSEQP, since

the types of the arguments determine the precise interpretation of the

symbol.

Definition. input condition formula. The input condition formulas

for certain function symbols in the basic FORTRAN theory are specified

by the table below. The input condition formula for a name not in the

left-hand column is (FALSE).

name input condition formula

ZPLUS (EXPRESSIBLE.ZNUMBERP
(ZPLUS (I STATE) (J STATE)))

ZDIFFERENCE (EXPRESSIBLE.ZNUMBERP
(ZDIFFERENCE (I STATE) (J STATE)))

ZTIMES (EXPRESSIBLE.ZNUMBERP
(ZTIMES (I STATE) (J STATE)))

ZQUOTIENT (AND (ZNEQP (0 STATE) 0))
(EXPRESSIBLE.ZNUMBERP
(ZQUOTIENT (I STATE)

(J STATE))))
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ZEXPTZ (AND (NOT (AND (ZEQP (I STATE) 0)
(ZEQP (J STATE) 0)))

(ZLESSP -1 (J STATE))

(EXPRESSIBLE.ZNUMBERP I
(ZEXPTZ (I STATE) (J STATE))))

ZLESSP (TRUE)

ZLESSPEQP (TRUE)

ZEQP (TRUE)

ZNEQP (TRUE)

ZGREATEREQP (TRUE)

ZGREATERP (TRUE)

NOT (TRUE)

AND (TRUE)

OR (TRUE)

lABS (EXPRESSIBLE.ZNUMBERP
(IABS (I STATE)))

MOD (AND (ZNEQP (J STATE) 0)
(EXPRESSIBLE.ZNUMBERP
(MOD (I STATE) (0 STATE))))

MAXO (TRUE)

MINO (TRUE)

ISIGN (AND (ZNEQP (J STATE) 0)
(EXPRESSIBLE.ZNUMBERP
(ISIGN (I STATE) (J STATE))))

IDIM (EXPRESSIBLE.ZNUMBERP
(IDIM (I STATE) (J STATE)))
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